
1 / 96

Static and dynamic Web pages
Introduction aux technologies Web

+

Initiation au développement Web

Eugen Dedu

Associate professor
Université Marie et Louis Pasteur, IUT Nord Franche-Comté

Montbéliard, France
Sept. 2024

https://dedu.fr
eugen.dedu@univ-fcomte.fr

https://dedu.fr/
mailto:eugen.dedu@univ-fcomte.fr

2 / 96

Objectives

● Example with a Web page and its source

● Objectives: develop simple Web pages, both static and dynamic, for all media (PC,
smartphone)

● Does not cover: modern Web sites (including mobile phone applications), multimedia
(artistic point of view)

● Prerequisites, for part 2 (dynamic Web):
– programming languages (variable, loop, functions, algorithm, instruction)
– databases (SQL)

3 / 96

Course overview

Static Web pages (Introduction aux
technologies Web):

● HTML
● CSS
● FI/FA: 3h CM, 6h TP

● No exam, but marks copied
from the technical part of
SAÉ14

Dynamic Web pages (Initiation au
développement Web):

● server-side scripts (back end): PHP
– database integration (MariaDB/MySQL)

● client-side scripts (front end):
JavaScript

● notions of modern dynamic Web
● FI: 7h30 CM, 16h30 TP
● FA: 7h30 CM, 10h30 TP

● Exam on machines of ~1h30

4 / 96

1. Static Web pages

5 / 96

Some definitions

● Internet = the network/infrastructure (e.g. Free, Orange)
● Services on top of Internet: e-mail, WWW (Web), games, videoconference

etc.
– each service uses its specific software: browser for WWW, videoconf client for

videoconference etc.
● The Web uses a client-server architecture, where machines are either

clients, or servers:
– server = waits for connections and has the data (Web pages)
– client = initiates the connection
– examples of Web servers: Apache, Nginx
– examples of Web clients (browsers): Firefox, Chrome, Safari, Edge

● HTML (HyperText Markup Language) = Web page "description" language
● HTTP (HyperText Transfer Protocol) = the protocol defining data exchange

between client (browser) and server

6 / 96

1.1 HTML

7 / 96

Bibliography

● Tutorial: https://www.w3schools.com/html/
● Exercises: https://www.w3schools.com/html/exercise.asp
● Reference: https://developer.mozilla.org/en-US/docs/Web/HTM

L

https://www.w3schools.com/html/
https://www.w3schools.com/html/exercise.asp
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML

8 / 96

Structure of an HTML page

● An HTML page is a text document (composed of visual
characters), similar to a C or Python program, and contrary to a
Word document or to an executable file for ex.

● In a browser, ctrl-u shortcut shows the page source
● A page has a declaration plus two parts:

– HTML declaration: <!DOCTYPE html>
– head: various information on the page, such as title, character

encoding, and site favicon
– body, the main part: page content, shown/rendered by the browser

● It is recommended to use lower case for file names
● We will validate all the pages we write: https://validator.w3.org

Minimal HTML page:
<!DOCTYPE html>

<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Simple page</title>
</head>

<body>
 My first Web page.
</body>
</html>

https://validator.w3.org/

9 / 96

The head part of the page

● Always use:
– <meta charset="UTF-8">
– <title>Page title</title>

● shown in title bar and browser tab
● shown by search engines
● used by default when bookmarking page

● Some optional tags:
– <link rel="icon" href="favicon.png">, the icon size is 16x16, 32x32, 48x48, or

64x64 pixels [more info]
– <link href="styles.css" rel="stylesheet">
– <style>...</style>
– <meta name="author" content="Eugen Dedu">

https://en.wikipedia.org/wiki/Favicon

10 / 96

The body part of the page (its content)

● Examples of tags, see tags.html
● Numerous other tags exist, out of scope of this course
● Five characters are reserved:

Reserved character HTML replacement

< <

> >

& &

" "

' '

11 / 96

Some details about tags

● HTML element:
<h1>Title</h1>
– h1 is the tag, and Title is its

content
– no space at left and right of

the title
● Some elements do not have

an end tag, for ex. <hr>

● Elements can have attributes
● Link
● Attributes are always put in the starting

tag
● name="value"
● Some global attributes (which are

available in all HTML elements):
– title – supplementary information,

rendered as tooltip
– lang – the language used (<p

lang="fr">..., or <a href="..."
lang="fr">Page in French)

– and others, see later

12 / 96

Images

●
● Bitmap images, storing each pixel separately

– non compressed: bmp
– compressed without information loss

(lossless): png – appropriate for images with
few colours and regular, like diagrams, graphs
and text screen captures

– compressed with loss of information (lossy):
jpg – appropriate for images with high
variations of colours, such as photos

– avif & webp allow compressed lossless and
lossy

● Vectorial images, described as maths
formulas

– arbitrarily scalable without loss of quality
– non compressed: svg

● Image editors: gimp, photoshop etc.
– demo: reduce image size

https://w3techs.com/technologies/overview/image_format

Letter ’e’ magnified 7.5 times (12->90 pt)

stored as bitmap stored as vector

https://w3techs.com/technologies/overview/image_format

13 / 96

Audio

<audio controls>
 <source src="radio.ogg">
 <source src="radio.mp3">
 Audio tag not supported.
</audio>

<audio src="radio.ogg" controls>
 Audio tag not supported.
</audio>

● Attributes: autoplay, controls, loop,
src etc.

● Several codecs exist, such as
Opus, Vorbis, and MP3; they differ
by licence (free or non-free),
compression ratio at various
bitrates

● Use Opus, it is free and the most
efficient

● Warning: browsers do not
implement all the codecs, see [wiki
pedia] => provide several audio
files/formats

https://en.wikipedia.org/wiki/HTML5_audio#Supported_audio_coding_formats
https://en.wikipedia.org/wiki/HTML5_audio#Supported_audio_coding_formats

14 / 96

Video

<video controls>
 <source src="movie.webm"
 type='video/webm; codecs="vp9,vorbis"'>
 <source src="movie.mp4" type="video/mp4">
 <track src="subtitles_en.vtt">
 Video tag not supported.
</video>

<video src="movie.ogg" controls>
 Video tag not supported.
</video>

● Attributes: autoplay, controls, height,
width, loop, src etc.

● Container = file format; audio/video
codec = audio/video compression
method

● Several formats for
codecs/containers exist, such as
AV1/WebM, VP9/WebM,
HEVC/MP4, H.264/MP4, and
Theora/Ogg

● Warning: browsers do not implement
all the formats, see [wikipedia] =>
provide several video files/formats

https://en.wikipedia.org/wiki/HTML5_video#Browser_support

15 / 96

URL

● protocol://host/path/filename
– protocol : http, https, file, ...
– if file:, the browser reads itself the file from hard disk, without using the Web

server
● If host is not specified: on page http://eugen.dedu.free.fr, where does

ParSSAP point to?
● If file name is not specified: what page is fetched when URL is http://

eugen.dedu.free.fr or http://eugen.dedu.free.fr/teaching/?
– index.html (or index.php etc.) will be returned, if it exists; otherwise the

server returns the list of files of the directory or an error

http://eugen.dedu.free.fr/
http://eugen.dedu.free.fr/
http://eugen.dedu.free.fr/
http://eugen.dedu.free.fr/teaching/

16 / 96

Web site hosting

● To host your Web site, you need a machine (server) connected non-
stop to Internet, and usually a DNS name too

● Either your own machine, that you administer yourself (for ex. security
updates)

● Or pay for an external hosting server:
– free free for .free.fr, hosterion 4 €/month, o2switch 5 €HT/month, ovhcloud 1

€/month, elsasscloud 5 €/month etc. etc.
– usually they provide specific applications (PHP, MariaDB, FTP/SSH access

etc.), backups, software updates (for security for ex.), high availability etc.

https://assistance.free.fr/articles/619
https://hosterion.com/
https://www.o2switch.fr/
https://www.ovhcloud.com/fr/web-hosting/

17 / 96

Web page evolution

● At the beginning (1991), text, links and images – we can click to surf to other pages!!
● CGI, PHP etc. – generate pages on the fly (dynamic pages)
● Forms – generate page based on user input
● CSS – separation of content and presentation
● ~2000: plugin – flash language to show video in browser
● JavaScript – browser animates page, JavaScript frameworks
● 2014 – JavaScript as standard language, audio and video, enhanced forms, event

attributes
● 2016 – responsive images, personalised contextual menu etc.
● 2019 – no HTML version anymore, but living standard
● Future: integration with mobile applications, single-page applications?

18 / 96

1.2 CSS

19 / 96

Cascading style sheets (CSS)

● Tutorial: https://www.w3schools.com/css
● Exercises: https://www.w3schools.com/css/css_exercises.asp
● CSS describes how HTML elements are to be displayed
● CSS saves a lot of work: it can control the layout of multiple web pages all at once

styles.css file:
body {
 background-color: blue;
}
p {
 font-style: italic;
}

HTML page:
...
<head>
 ...
 <link rel="stylesheet" href="styles.css">
</head>

<body>
<p>A first paragraph.
<p>A second one.

Without CSS: With CSS:

https://www.w3schools.com/css
https://www.w3schools.com/css/css_exercises.asp

20 / 96

CSS selectors

● Selector – specifies the elements to style
● Examples:

– p – all p elements
● p:hover – when the mouse is over them

– .my-style – all the elements with class="my-style"
– p.my-style – all p elements with class="my-style"
– #my-style – the element with id="my-style"

● (id and class are global attributes)
– p, h1, h2 – all p, h1, and h2 elements
– much more

styles.css file:
h5, p {
 font-style: italic;
 text-align: center;
}

http://www.w3schools.com/cssref/css_selectors.asp

21 / 96

CSS properties – text and links
● Block declaration – specifies the style to apply to the

selector
● One or several declarations of type property: value;

● text-align: center; text-align-last: right;
● text-indent: 2em;
● letter-spacing: .2em;
● line-height: 1.3em; /* space between lines */
● word-spacing: ...;
● text-shadow: ...;
● color: red;
● font-size: x-large; /* small, large ... */
● font-weight: bold; font-style: italic;

styles.css file:
h5, p {
 font-style: italic;
 text-align: center;
}

a {
 color: hotpink;
}
a:link { /* unvisited link */
 color: red;
}
a:visited { /* visited link */
 color: green;
}
a:hover { /* mouse over link */
 color: hotpink;
}
a:active { /* selected link */
 color: blue;
}

22 / 96

Three places for CSS declarations

Inline (for a unique element)
● HTML page: <p style="color:

red">...
● => applies only to this <p>

Internal (for a page with unique style):
● HTML page: <head>...<style>p

{color: red}</style>...</head>
● => applies to all <p> of the page

External:
● HTML pages: <head>...<link

rel="stylesheet"
href="styles.css">...</head>

● styles.css file: p {color: red}
● => applies to all <p> of all the pages

including styles.css
● => pages load faster, because

the .css file is downloaded only once

Decreasing priority: inline, internal,
external, browser

23 / 96

CSS properties – box model, positioning, and z-
index

● border-bottom: 3px solid red;
● border-radius: 8px;
● padding: 1em;
● margin-top: 3em;
● width and height apply to Content!

Positioning (position: ...):
● static
● relative (to its static position)
● fixed (relative to viewport/window)
● absolute (relative to its parent), e.g. a text at

bottom right of an image
● sticky (stops moving and remains visible when

scrolling)

https://www.w3schools.com/css/css_positioning.asp

z-index:
● blue rectangle: z-index: 1
● red circle: z-index: 2

https://www.w3schools.com/css/css_positioning.asp

24 / 96

CSS properties – tables

● table, th, td {
border: 1px solid;
}

● table {
border-collapse: collapse;
}

● td {
text-align: left;
vertical-align: bottom;

}
● td, th {

padding: ...;
border-bottom: ...;

}
● See table borders, alignment,

style, responsive

https://www.w3schools.com/css/css_table.asp

25 / 96

CSS properties – float

● float: none

● float: left

● clear: both – the next element is
shown below the floats

● Normally, div elements
are displayed one
below the other

● With float: left, they
float next to each other

26 / 96

CSS properties – background, visibility

● background-color: blue;

● background-image:
url("paper.png");

● opacity: 0.3;

● disabled: true;
● display: none (inline,

block, ...), does not take
space
– https://sources.debian.org/src

/ekiga/4.0.1-6, click to toggle,
search for toggle in the
source

● visibility: hidden
(visible, ...), takes space

https://sources.debian.org/src/ekiga/4.0.1-6
https://sources.debian.org/src/ekiga/4.0.1-6

27 / 96

CSS (selector) combinators

● ul li – descendant selector = all the
li elements inside ul elements
(descendants, i.e. children and
children of children etc.)

● ul > li – child selector = all the li
elements which are direct children
of ul

● div + p – adjacent sibling
("frère/sœur") selector = all li right
after (immediately following) an ul

● div ~ p – general sibling selector =
all li after an ul

div p {
 background-color: yellow;
}
div > p {
 color: red;
}
div + p {
 font-style: italic;
}
div ~ p {
 font-weight: bold;
}

<p>Start
<div style="height:200px">Un div
 <p>Par inside div

 Alpha<p>Par inside second div
 Beta
</div>
<p>Un
<p>Deux</p>

<code>int a=0;</code>
<p>Trois
<p>Quatre
Alpha<p>Par inside second divBeta
<p>Hi

28 / 96

CSS units

● Used in many cases: width, margin, padding, font-size etc.
● Absolute lengths: cm, px etc.
● Relative lengths:

– em (= current element's font-size)
– rem (= root element's font-size)
– 1vw = 1% of viewport (~browser) width etc.

● Prefer relative lengths
● More info: https://www.w3schools.com/css/css_units.asp

https://www.w3schools.com/css/css_units.asp

29 / 96

CSS specificity (rule priority)

● What is the colour of the text?

<style>

 #demo {color: blue}

 .test {color: green}

 p {color: red}

</style>
● <p class="test" id="demo" style="color: pink">Hello!

30 / 96

Standard menu (uses <nav> and ul list)

In <body>:
<nav>

 Home
 Course
 Lab
 Seminar

</nav>

Example of style, in .css:
nav ul {
 padding: 0; /* remove space on left */
 overflow: hidden; /* text after menu shown at bottom */
 background-color: grey;
}
nav li {
 list-style-type: none; /* remove bullets */
 float: left; /* show them one at right of the other */
}
nav li a {
 display: block;
 color: white;
 padding: 14px 16px;
 text-decoration: none; /* remove bottom line */
}
nav li a:hover {
 background-color: black;
}

Note that this style applies only to nav tag (the menu)!

More information: https://www.w3schools.com/Css/css_navbar.asp

https://www.w3schools.com/Css/css_navbar.asp

31 / 96

Responsive Web Design

● RWD = techniques to optimise reading and
browsing by adapting the page to client
characteristics:
– different supports: screen (PC, tablet,

smartphone), printed paper, Braille etc.

– the same support can have different
characteristics: width, height, orientation etc.

● Still open questions:
– how to present large tables on small screens?
– how to reorganise content for small screens?

Source: https://en.wikipedia.org/wiki/Responsive_web_design

https://en.wikipedia.org/wiki/Responsive_web_design

32 / 96

Real examples of RWD

● Bad examples: big image shown in small [page perso]
● rwd.html
● Adapt to window width

– change number of columns in references and notes, shows/hides the table of contents [wikipedia]
– reorganise itself [vtp]
– change number of columns, replaces several buttons to only one, remove minor information is too small screen

(weather), replace text search by a button etc., look at he top of the page and an article [bostonglobe]
– affiche ou non des menus, change le nombre de colonnes et leur largeur [agerpress, tweakers, erc]
– has RWD as goal [boursorama]

● Use as much as possible the browser's default font size (cf. Preferences); if needed, use em (1em =
height of current font) instead of pixels or points

● Adapt to media type
– the printed page does not have the upper, left, and right menus [wikipedia]

http://www.cse.unsw.edu.au/~mahbub/
https://fr.wikipedia.org/wiki/France
https://parcheggi.vtp.it/default.aspx?lng=FR
http://www.bostonglobe.com/
http://www1.agerpres.ro/
http://tweakers.net/
https://erc.europa.eu/starting-grants/french
http://groupe.boursorama.fr/fr/innovations/nos-innovations/
http://en.wikipedia.org/wiki/Css

33 / 96

Implementation of RWD: media specification

● Use media (screen, print etc.) with different
CSS files:

<link href="screen.css" media="screen"
rel="stylesheet">

<link href="print.css" media="print"
rel="stylesheet">

● The browser uses the CSS corresponding to
the current media

– note: both desktop and mobile browsers choose
screen

● Specify media using one/several limiting
expressions in parentheses (= media query)

● Limiting expressions: width&height (allows
max- and min- too), orientation etc.

1. In the Web page:
<link rel="stylesheet" href="style.css"
 media="(max-width: 80em)">

2. In the CSS file:
@media (max-width: 80em) {
 ...
}

3. In a separate CSS file, imported by the main CSS file:
@import url("style2.css") (max-width: 80em);

Explain source code of rwd.html

34 / 96

Conclusions

● Main skills to have:
– page skeleton, favicon
– p, h... headings, hr, a absolute and relative, img, id and internal links,

abbr, comment, b, i, small
– table, list, audio, video
– css selector and property, menu, rwd @media browser width
– valid (errorless) page

35 / 96

2. Dynamic Web pages
"There are some kernel developers who would not speak to me again if I told them I was playing with web

technologies" (James Bottomley, heard at LinuxCon Japan, 2016)

36 / 96

HTTP protocol, Web page transfer with an image

Web page request

image request

Web page response

image response

Web client (browser) Web server

URL entering

interpret and
show page

HTTP is an application protocol,
above QUIC/TCP and IP

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Simple page</title>
</head>
<body>
 My first page.

</body>
</html>

Other embedded objects:
css, multimedia elements, ...

page reading/generation

image reading

show image

Web server 2

listening for client...
listening for client...

37 / 96

HTTP headers

Web client request:
GET / HTTP/1.1
Host: eugen.dedu.free.fr
User-Agent: Mozilla/5.0 (X11; Linux x86_64;
 rv:125.0) Gecko/20100101 Firefox/125.0
Accept: text/html,application/xhtml+xml,
 application/xml;q=0.9,image/avif,
 image/webp,*/*;q=0.8
Accept-Encoding: gzip, deflate
DNT: 1
Sec-GPC: 1
Connection: keep-alive
Upgrade-Insecure-Requests: 1

Web server response:
HTTP/1.1 200 OK
Date: Thu, 18 Apr 2024 15:10:53 GMT
Server: Apache/ProXad [Jan 23 2019 20:05:46]
Last-Modified: Wed, 17 Apr 2024 12:54:48 GMT
ETag: "e10130bc-63af-661fc698"
Connection: close
Accept-Ranges: bytes
Content-Length: 25519
Content-Type: text/html

<!DOCTYPE html>
<html lang="en">
<head>
...

38 / 96

Channel security with HTTPS, TLS

● Security considerations: HTTP data is transmitted in clear over network
● TLS sits between transport protocol and application
● TLS provides:

– server authentication: through public key infrastructure
– cryptography and data integrity: through symmetric cryptography

● Applications:
– HTTPS = HTTP Secure = HTTP over TLS

● configure Web server to use, port 443 by default
– e-mail software, videoconferencing (VoIP), IM etc.

● All browsers have a CA (certificate authority) list, cf. Preferences->Privacy->Certificates
● When it contacts site S, it checks that the certificate given by the site is the same as the certificate of S

given by CA
● More information: [wikipedia]

https://en.wikipedia.org/wiki/Transport_Layer_Security

39 / 96

Modern Web sites are dynamic

● Nowadays, most of Web pages on Internet are not static, but
dynamic:
– generated on-the-fly, using server-side scripting and a database,

known as back-end programming
– and animated or modified by the browser, using client-side scripting,

known as front-end programming

40 / 96

2.1 Server-side scripting: PHP

https://w3techs.com/technologies/overview/programming_language/all

https://w3techs.com/technologies/overview/programming_language/all

41 / 96

PHP

● Huge documentation on PHP
● Tutorial: https://www.w3schools.com/php/
● Exercises: https://www.w3schools.com/php/exercise.asp
● Online Web sites to test simple PHP programs:

– https://www.tutorialspoint.com/php_webview_online.php
– https://www.w3schools.com/php/phptryit.asp?filename=tryphp_intro
– replit.com etc.
– install a Web server and the PHP plugin (e.g. LAMP) on your machine
– or use the rt-projet server provided by the university

● PHP function reference: https://php.net/manual/en

https://www.w3schools.com/php/
https://www.w3schools.com/php/exercise.asp
https://www.tutorialspoint.com/php_webview_online.php
https://www.w3schools.com/php/phptryit.asp?filename=tryphp_intro
https://php.net/manual/en

42 / 96

On-the-fly page generation with PHP
example.php file:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Simple page</title>
</head>
<body>
 A table:
 <table>
 <?php
 for ($i=0 ; $i < 4 ; $i ++)
 echo "<tr><td>Iteration $i";
 ?>
 </table>
</body>
</html>

Web page generated:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Simple page</title>
</head>
<body>
 A table:
 <table>
 <tr><td>Iteration 0
 <tr><td>Iteration 1
 <tr><td>Iteration 2
 <tr><td>Iteration 3
 </table>
</body>
</html>

● The script is executed upon page request
● It is executed on the server (can take time)
● It is executed only once per request, to generate the HTML page
● The PHP interpreter executes each PHP block and replaces it with its output
● The script outputs HTML text

Web
server Browser

Rendered
page:

Internet

43 / 96

PHP blocks

● Between <?php and ?>
● <?= $i ?> is a shorter form of <?php echo $i ?>
● You can include as many PHP blocks as you wish in the page

example.php file:
<table>
<?php
 for ($i=0 ; $i < 4 ; $i ++)
 echo "<tr><td>Iteration $i";
 echo "</table>";
?>
<?php $v = 5; ?>
There are <?= $v ?> lines.

Web page generated:
<table>
<tr><td>Iteration 0
<tr><td>Iteration 1
<tr><td>Iteration 2
<tr><td>Iteration 3
</table>
There are 5 lines.

44 / 96

Comments, variables and constants

● Comments: // and /* ... */
● All instructions end with semicolon (;)

– the ; before closing tag ?> is optional
● Variables:

– start with $
– there is no declaration
– numerical operators: +, –, *, /, %, ++, – –
– combined operators: +=, –=, *=, /=, %=, .=
– boolean operators: <, <=, >, >=, ==, ===, !=, !== (value and type), or ||, and &&, xor, !

● Constants:
– define ("NB_STUDENTS", 10);
– their scope is global (usable everywhere in the script)

45 / 96

Control structures

● if, switch, while, for, do...while
– break, break n, continue,

continue n

● match (= switch
plus facile à utiliser)

for ($i=0 ; $i<10 ; $i++)
 if ($i == 4)
 break;

for ($j=0 ; $j<10 ; $j++)
 if ($j == 4)
 continue;

$type = ($age>=18 ? 'major' : 'minor');

if ($age>=18)
 $type = 'major';
else
 $type = 'minor'

● Ternary operator

switch ($statusCode) {
 case 200:
 case 300:
 $message = null;
 break;
 case 400:
 $message = 'not found';
 break;
 case 500:
 $message = 'server error';
 break;
 default:
 $message = 'unknown code';
 break;
}

// PHP >= 8.0 only
$message = match ($statusCode) {
 200, 300 => null,
 400 => 'not found',
 500 => 'server error',
 default => 'unknown code',
};

// it doesn't require a break
statement
// it can combine different arms
into one using a comma
// it returns a value, so you only
have to assign value once

46 / 96

Strings

● 'A string' or "A string"
● $v=5; echo "v = $v"; echo 'v = $v';

– " replaces variables and interprets \\, \n, \r, \t
● Concatenation: $x = 'I live in ' . 'Amman'
● $x[0]
● Some functions: strtolower, strtoupper, trim, strlen, strpos,

substr, nl2br

47 / 96

Arrays

Indexed arrays: (n,value), index n is an integer number
Compared to C++:
- elements can have different types
- first index can be any positive or negative value (instead
of 0)
- dynamic size

$t = array (10, 100, "kiwi"); // initialise with several values
print_r ($t); // Array ([0] => 10 [1] => 100 [2] => kiwi)

 // print_r shows human-readable information
echo $t[1]; // 100
echo $t[100]; // nothing shown
$t[2] = 12; // change type
print_r ($t); // Array ([0] => 10 [1] => 100 [2] => 12)

$u[3] = 5;
$u[] = "hello"; // assign after last index
print_r ($u); // Array ([3] => 5 [4] => hello)

echo count ($t) . " " . count ($u); // 3 2

Associative arrays: (key,value), key is a string

$t = array ('kiwi'=>5, 'fig'=>10, 'apple'=>'x');
OR
$t['kiwi'] = 5; $t['fig'] = 10; $t['apple'] = 'x';

print_r ($t); // Array ([kiwi]=>5 [fig]=>10 [apple]=>x)
echo $t['fig']; // 10
echo $t['peach']; // nothing shown
echo $t[100]; // nothing shown
$t['kiwi'] = 12;
print_r ($t); // Array ([kiwi]=>12 [fig]=>10 [apple]=>x)

// loops
foreach ($t as $val)
 echo $val . " "; // 12 10 x
foreach ($t as $key=>$val)
 echo "($key,$val) "; // (kiwi,12) (fig,10) (apple,x)

Stores multiple values (even of different types) in one single variable

48 / 96

Function declaration

● function xyz () {...}
● function abc ($param1, $param2) {...}

● return ...;

Default parameters: Global vs local variables:

function ht ($price, $tax=19.6) {
 return round ($price * (1-$tax/100), 2);
}
...
echo "Price HT = " . ht (100, 5.5);
echo "Price HT = " . ht (100);

function show () {
 global $v; // get variable from outside
 echo $u; // shows nothing
 echo $v; // shows 2
}
$u = 1;
$v = 2;
show ();

49 / 96

Miscellaneous functions

● mail ($to, $subject, $message)
● $crtdate = date ("Y-m-d");

– look at the reference of date function
● die ("Ended") or exit ("Ended")

50 / 96

File inclusion

● You can write PHP code in an external file, and include it in the main HTML page
● require_once 'file_name';

– other, less useful, methods (avoid them):
● require 'file_name';
● include 'file_name';
● include_once 'file_name';

● Security considerations: Store external files outside the Web hierarchy, so that
they cannot be accessed directly by user using an URL!!
– suppose http://a.fr/a.php has require_once ("b.php"), then troubles may appear when a

user asks for http://a.fr/b.php!!!
– so store b.php for ex. in the parent directory (..), and use require_once ("../b.php")

51 / 96

Forms

2nd page, processing user's input and
generating the results page:

Your input is: name=Dupont, bike=yes
Here is the result of the research:

red bike: 200 €
white bike: 250 €
...

1st page, showing the HTML form
and allowing user to send data to server

52 / 96

Forms, 1st page (showing the form)

<form action="processing.php">
Name: <input type="text" name="name">

Password: <input type="password" name="pwd">

<input type="checkbox" name="bike">I have a bike

<label><input type="checkbox" name="car">I have a car</label>

<input type="radio" name="cat" value="yes">Yes

<input type="radio" name="cat" value="no">No

<input type="submit" value="Submit">
</form>

● Usual fields: text (visible
or with stars), check
boxes, radio buttons,
submit button...

● Attributes:

– type="range" – shows a cursor between two values

– value, step

– autofocus – receives the focus once the page loaded

– placeholder="dd-mm-yyyy" – shows info about the expected
value

● Always validate form fields, to avoid bad user experience:

– required – mandatory field

– type="email"

– type="number"

– type="date" – also shows a calendar to choose a date

– min, max, size, maxlength

– specific validation (e.g. only odd numbers are allowed) can be
done using JavaScript, as shown later

53 / 96

Forms, 2nd page (processing the form)

● Generates the second page on-the-fly
● Use $_GET global variable to read user input

– user types "toto" in form's field with name="msg"
– the page is called as .../m.php?msg=toto
– echo $_GET["msg"] shows toto

processing.php file:
<?php
 // show all the parameters
 foreach ($_GET as $key => $val)
 echo "$key = $val
";
?>

54 / 96

GET vs POST method

● Two methods to send parameters from client to server:
– GET: parameters are appended to the URL: processing.php?name=John&bike=on
– POST: parameters are sent in the HTTP header, not shown by the browser (but still easily

found by a malicious user!!): <form ... method="post"> in HTML, and $_POST in PHP
● POST use:

– when the action must not be repeated, e.g. buying on Internet
– for large volume of data (> 2kB in practice)
– other specific cases

● GET use:
– in all the other cases
– advantage: allows to save the URL (ADE RT, my OMNI colleagues) and automate tasks

(e.g. show map to compute distances viamichelin for OM)!

55 / 96

Form processing security

● Security considerations (input data): $_GET and $_POST get
data from users, never trust user input data!

– if only some values are valid (e.g. a student's mark, integer between
0 and 20), then check them before use, for ex:

$mark = preg_match ('/^1?[0-9]$/', $_GET['mark']);

$name = preg_match ('/^[a-zA-Z]*$/', $_GET['name']);
– if all alphanumeric characters are valid (e.g. a user comment), then

escape problematic characters, using for ex. htmlspecialchars or
htmlentities

56 / 96

Client-side storage, cookies
● A cookie is a string of characters stored on client

(browser) but read and written by the server
● A cookie has a name, a value (the string of

characters), and is associated to a domain name
● It allows an application to identify a user throughout all

the pages of the Web site
● Cookies are also extensively used to track users,

problem with privacy (Google is no 1, it is
everywhere!)

● At each HTTP request, the browser sends all the
cookies associated to that domain

Cookie table in browser:
domain | name | value

a.com | name | John
a.com | age | 37
b.fr | login | mkassim
b.fr | pwd | abcde
c.ro | name | Peter

● The PHP program on server can read the
cookies (already received by server) and write
cookies (to be sent to client along with the
generated page)

● Reading a cookie:
– echo $_COOKIE['name'];

● Writing/updating and removing a cookie:
– setcookie ("name", "Jean"); // exists only for the

session
– setcookie ("age", "37", time()+86400); // exists

for 86400s=24h
– setcookie ("age", "38", time()-3600); // remove

cookie (older date)
– no HTML character must be sent before calling

setcookie!!
● More information: https://www.w3schools.com/

php/php_cookies.asp

https://www.w3schools.com/php/php_cookies.asp
https://www.w3schools.com/php/php_cookies.asp

57 / 96

Cookies

● Security considerations (input data): Cookies are stored on browsers,
so user can modify them => never trust cookie values

● Check validity of cookie value with preg_match, as shown previously
● Think of what you store in a cookie: is it a good idea to store the login

(ededu or jvaljean) in a cookie?
– by changing the cookie in his browser (for ex. using "Cookie quick manager"

firefox extension) a malicious user can pretend being any user
– how do you fix this vulnerability?

58 / 96

2.2 Accessing databases using PHP

59 / 96

Usefulness of DB

● Dynamic pages generally take data from DB, examples:
wikipedia, qwant, covidtracker

● Provides persistent, and optimised, storage of data, in files
● Several standards to access a DB, we will use SQL, the most

popular
● Several incompatible SQL server implementations exist, we will

study MariaDB/MySQL, the most popular
– SQL exercises: https://www.w3schools.com/sql/exercise.asp

https://www.w3schools.com/sql/exercise.asp

60 / 96

SQL DB organisation

● A DB server manages several DB
● A small Web site uses one DB, e.g. students
● A DB has a structure and data
● Structure:

– a DB contains tables, but also indexes etc.
– a table has columns
– a column has a name and a type, e.g.

VARCHAR(30), CHAR(30), INT, FLOAT, DATE
● Data:

– data is stored as rows of tables, called records

Database students

Table marks Table ...

name mark

Rami 10

Raed 9

Jane 3

Peter 7

61 / 96

DB structure creation

● Using phpmyadmin Web application (visual) <-- we will use this,
because it is simpler

● Using SQL queries in PHP or using mysql command (in GNU/Linux):
– SHOW DATABASES;
– DROP DATABASE dbname;
– DROP TABLE table_name;
– NOT NULL
– UNIQUE
– primary key – uniquely identifies a row
– index – speeds up data SELECT
– AUTO_INCREMENT

CREATE DATABASE students;
CREATE TABLE marks (
 name VARCHAR(30) UNIQUE NOT NULL,
 mark INT
);

62 / 96

Accessing DB using PHP

● Tutorial: https://www.w3schools.com/php/php_mysql_intro.asp
● PHP provides two API (ways) to access a DB:

– mysqli extension:
● procedural style <-- we will use this
● object-oriented style

– PHP Data Objects (PDO)
● Usually, we execute SQL queries from PHP

– mysqli_query (..., $query);
– four main SQL operations on data: select, insert, update, delete

https://www.w3schools.com/php/php_mysql_intro.asp

63 / 96

3-tier architecture, PHP – DB exchanges

HTTP client
(browser)

GET /test.php

receives page
& shows it

...

...

HTTP server
& DB client
(par ex. apache)

/test.php:
...
mysqli_connect (...);
...
mysqli_query ("INSERT INTO ...");
...
mysqli_query ("SELECT FROM ...");
...

DB server
(par ex. MariaDB)

phpmyadmin is another .php file, like test.phpTime

64 / 96

// open DB
$ct = mysqli_connect ('localhost', 'login', 'pwd', 'dbname');
if ($ct == null) die ("Unable to connect");

... // work with DB data

// close DB
mysqli_close ($ct);

Data – record insertion, update and removal in
PHP/MariaDB

Record insertion:
$ret = mysqli_query ($ct, "INSERT INTO marks VALUES ('Raed', '9')");
if ($ret == null) die ("Unable to execute query: " . mysqli_error ($ct));

Record update:
$ret = mysqli_query ($ct, "UPDATE marks SET mark='10' WHERE name='Raed'");
if ($ret == null) die ("Unable to execute query: " . mysqli_error ($ct));

Record removal:
$ret = mysqli_query ($ct, "DELETE FROM marks WHERE name='Raed'");
if ($ret == null) die ("Unable to execute query: " . mysqli_error ($ct));

name mark

Rami 10

Raed 9

Jane 3

Peter 7

the two columns
in the order of DB

65 / 96

Data – record retrieval in PHP/MariaDB
Data retrieval and processing (the most used operation!):
$result = mysqli_query ($ct, "SELECT * FROM marks WHERE mark>='9'");
if ($result == null) die ("Unable to execute query: " . mysqli_error ($ct));
while ($row=mysqli_fetch_assoc ($result)) // associative array
 echo $row['name'] . " " . $row['mark'] . "
";

Functions similar to mysqli_fetch_assoc:

// indexed-only array (faster I think)
// $nbLines = mysqli_num_rows ($result);
while ($row=mysqli_fetch_row ($result))
 echo $row[0] . " " . $row[1] . "
";

// indexed and associative array (slower I think)
while ($row=mysqli_fetch_array ($result))
 echo $row['name'] . " " . $row[1] . "
";

name mark

Rami 10

Raed 9

Jane 3

Peter 7

66 / 96

DB security, SQL injection

● Security considerations (damage):
● Attack (if input data is not checked before use):

– let's have a page with a text field called name for the name to search
– the attacker's goal is to make the text he enters interpreted as a command
– the following PHP code is vulnerable:

$req = "SELECT * FROM student WHERE name=' " . $_GET['name'] . " ' ";

● Solutions:
– use preg_match if only some characters should be allowed
– replace $_GET['name'] by mysqli_real_escape_string (..., $_GET['name'])
– prepared statements

Christine
ok

x' OR 1='1
shows all the table!

67 / 96

2.3 Client-side scripting: JavaScript

https://w3techs.com/technologies/overview/client_side_language

https://w3techs.com/technologies/overview/client_side_language

68 / 96

Client-side use cases

● Example: a PHP page showing current time does not update each second

● Loading new page content or submitting data to the server via Ajax without reloading the
page (for example, a social network might allow the user to post status updates without
leaving the page)

● Animation of page elements, fading them in and out, resizing them, moving them, etc.
● Interactive content, for example games
● Validating input values of a Web form to make sure that they are acceptable before being

submitted to the server
● Transmitting information about the user's reading habits and browsing activities to various

websites. Web pages frequently do this for Web analytics, ad tracking, personalization or
other purposes

Current hour is: <?= date("H:i:s") ?>.
Current hour is: 11h20'25''.

69 / 96

JavaScript

● Huge documentation on JavaScript
● Tutorial: https://www.w3schools.com/js/
● Exercises: https://www.w3schools.com/js/exercise_js.asp

https://www.w3schools.com/js/
https://www.w3schools.com/js/exercise_js.asp

70 / 96

Example

● Inline code or external file

● Code is executed at its position, when reading (repaint page might be needed)
– to avoid errors, declare functions before use
– to execute it at the end of page loading, simply place it at the end of the page, right before

</body>
● Show console for errors: Tools->BrowserTools->WebDeveloperTools
● Use "use strict"; to help you write cleaner code

<script>
 alert ("Hi!");
</script>

<script src="a.js"></script>

a.js file:
alert ("Hi!");

<script>
"use strict";
...
</script>

71 / 96

Comments, variables, control structures and
operators

● Comments: // and /* ... */
● Like in PHP, all instructions end with semicolon (;)

– right before </script> it is optional
● Variables: let val = 5;
● Constants (can be initialised only once): const maxMark = 20;
● Control structures (if, while, ...): like in PHP/C++
● Operators (+, –, ...): like in PHP/C++

72 / 96

Strings

let s = "hello world"; // or 'hello world'
alert (s.length); // 11
alert (s.charAt(1)); // "e"
alert (s.substring(3,7)); // "lo w"
alert (s.indexOf("o")); // 4
alert (s.toUpperCase()); // HELLO WORLD
alert (s + "!"); // hello world!

73 / 96

Arrays and functions

Arrays:
● index is integer, starting with 0
● values can be of different type
● dynamic size

let colours = ["red", "blue", "green"];
colours[0] = "yellow";
alert (colours.length); // 3
// add 4th colour
colours[colours.length] = "black";

Functions
● Like in PHP:

function xyz (param1, param2) {...}
● Default parameters: like in PHP

Scope of variables: global visibility, except if
declared inside a function

function test () {
 let vlocal = "hi"; // exists only in this function
 vglobal = "hi"; // ok, global variables are visible
}
let vglobal; // global variable
test ();
alert (vlocal); // error
alert (vglobal); // hi

74 / 96

BOM: window, timers, dialogue boxes

Browser Object Model: interaction with browser
Timers:
function helloWorld () {
 alert ("Hello world");
}
setTimeout (helloWorld, 1000);

setInterval (helloWorld, 500);

let num=0;
let i = setInterval (repeatCall, 500);
function repeatCall () {
 if (num++ < 4)
 alert (num);
 else
 clearInterval(i);
}

Dialogue boxes:
alert ('Hi!');

if (confirm("Are you sure?"))
 alert ("I am glad");
else
 alert ("I am sorry");

let yourname = prompt ("Your name?", "abc");
if (yourname != null)
 alert ("Welcome " + yourname);

Console:
console.log (); // debugging message, press F12
to show console

75 / 96

DOM: selecting HTML elements, changing their
style and content

document.title = "New title";
alert (document.URL);

<p id="x">A paragraph.
 <!-- id is a global attribute, should be
 unique in the page) -->
<p>A second paragraph.

<script>
// select a unique HTML element, by its id
let p = document.getElementById ("x");

// change HTML elements
p.style.color = "blue";
// compare to background-color in CSS
p.style.backgroundColor = "red";
p.innerHTML = 'Modified paragraph';
</script>

One
<li class="col">Two
<li class="col">Three

<script>
// select multiple elements, by their tag name / class
let list = document.getElementsByTagName ("li");
// let list = document.getElementsByClassName ("col");

// change HTML elements
for (let i=0; i<list.length; i++)
 list[i].style.color = "green";
</script>

Document Object Model: API to access HTML page

76 / 96

DOM: adding and removing HTML elements
Adding a text:
let txt = document.createTextNode ("Some text");
document.body.appendChild (txt);

Adding a table:
let table = document.createElement ("table");
for (let i=1; i<=10; i++) {
 let row = document.createElement ("tr");
 for (let j=1; j<=10; j++) {
 let cell = document.createElement ("td");
 cell.appendChild (document.createTextNode (i*j));
 row.appendChild (cell);
 }
 table.appendChild (row);
}
document.getElementById("x").appendChild (table);

Removing an element:
document.getElementById("x").remove ();

77 / 96

DOM: events

● Event = something provoked by user (see below) or browser itself (timer)
● Examples of events: window (onload, onresize), form (onchange, onfocus,

onblur, onsubmit), keyboard (onkeypress), mouse (onclick, ondblclick,
onmouseover/onmouseenter, onmouseleave), media (onplay, onpause,
onended)

● When an event happens (is triggered), its handler function is called
● DOM level 0, inline model:

– uses element's attributes

<h1 onclick="alert('Click')">...</h1>

<p onclick="f('click')">...</p>

Two other ways to specify event handler:
DOM level 1, traditional model:
- the handler is added or removed by scripts
 <h1 id='p'>...
 document.getElementById('p').onclick = myfct;
 window.onload = myfct;
DOM level 2:
- allows several handlers for a same event

78 / 96

DOM: event handling function, form validation

● Some events lead to actions
● For them, if the handling function returns

false, then the action is not
carried/followed

● Examples of events with action:
– onclick – does not follow the link

<a href="..." onclick="return
false">Disabled text

– onkeypress – ignores character
<input type="text" onkeypress="if
(event.key == 'x') return false" ...>

– onsubmit – validates form, does not go to
the 2nd page, does not submit form to
server

Example of form validation (validate input
data before leaving form page):
<script>
function validation (form) {
 let age = form.age.value;
 if (age != "" && age>=0 && age<=120)
 return true;
 return false;
}
</script>

<form onsubmit='return validation(this)'>
 Your age: <input type="text" name="age">
 <input type='submit'>
</form>

79 / 96

Graphics on a Web page

<canvas id="test" width="100" height="100"></canvas>

<script>
let example = document.getElementById ("test");
let context = example.getContext ("2d");
context.fillStyle = "red";
context.fillRect (0, 0, 100, 100);
context.strokeStyle = "blue";
context.beginPath();
// x centre, y centre, radius, starting angle, ending angle
context.arc (50, 50, 20, 0, 2*Math.PI);
context.stroke ();
</script>

As bitmap (using canvas) As vectors (using SVG)

<svg width="100" height="100"
 xmlns="http://www.w3.org/2000/svg">
 <circle cx="50" cy="50" r="40" stroke="green"
 stroke-width="4" fill="yellow" />
</svg>

Rectangular regions can be defined in HTML, allowing to draw various graphics on it
(text, line, rectangle, circle/ellipse, gradient, colour, image) and animate or interact

with them using JavaScript, CSS etc.

80 / 96

Client-side storage: cookies and Web storage

Cookies, found on client, but usually
used server-side and hence
transmitted server-client, max around 4
kB; JavaScript can access them:

● document.cookie =
"name=John"; // create/modify a
cookie

● alert (document.cookie);
● to get a specific cookie:

a = explode (";", document.cookie);
alert (a['name']);

Web storage, found on client and read
only client-side, allows much more
space for storage:

● localStorage.name = "John"; //
create/modify an item

● localStorage.removeItem ("name");
 // remove item

● sessionStorage works similarly, but
is removed by browser when tab
closes

IndexedDB – store (large) data locally
in browser as a DB

81 / 96

Client-initiated updates: AJAX

● AJAX, Asynchronous JavaScript and XML, is a method to use
JavaScript in Web pages to send HTTP requests to server and use
the response to update the page

● It is client-initiated (server-initiated updates exist too, Server-Side
Events)

● Examples
– live update of match scores [sofascore]
– download and show items based on user choice [123pneus, choose vehicle]
– search engine which shows completion during user input [google]

● Data format: text, XML, JSON, ...

http://www.sofascore.com/fr/
http://www.123pneus.fr/

82 / 96

AJAX, minimal example
Script in the Web page, executed by the client:
// using promises
setTimeout (a, 3000);
async function a() {
 let resp = await fetch ('ajax.txt');
 let user = await resp.text ();
 alert (user);
}

ajax.txt file, on the server:
Returned text

Possible evolutions:
● the server updates ajax.txt in real time, and the clients read it regularly
● use ajax.php, which generates the data on-the-fly
● use ajax.php?param=...
● ajax.php reads from a DB to generate the returned text

// using callbacks
let req = new XMLHttpRequest ();
req.onload = function () { // callback function
 alert (this.responseText); // 'Returned text'
};
req.open ('get', 'ajax.txt');
req.send ();

83 / 96

JavaScript security

● Security considerations (damage): XSS (Cross-Site Scripting)
– inject client-side scripts written by a user in the page viewed by other users, to be interpreted by them

● Example:
– a site where the users, after login, can add comments
– M notices that if he adds the comment I like flowers!<script src="...">, the text is shown and the scripts is

executed
– each user who looks at the page will see the text, and the script will execute, even without noticing it
– the script obtains the authentication cookie for ex. and sends it to M's server, allowing him to be like the user

● Real case: bugzilla
● Problem: the browser/server executes a user's code in the context of another user
● Solution: escape special characters: <, >, ", &, ', but others too, in al user entries (URL included)

https://lwn.net/Articles/688207/

84 / 96

Client-side vs server-side scripting

● Tic-tac-toe in the same computer or in network, calculator,
currency converter, chess against computer – which side is
better?

● Code visibility: if client-side, all code is visible to the user; if
server-side, code is invisible (e.g. passwords, high quality
algorithm, safe access to DB and sensitive files on server)

● Server-side consumes resources on server
● Client-side – beware of client incompatibility

85 / 96

2.5 Web security

86 / 96

Reiteration on Web security

● Internet is a very dangerous place!!
● Internet is used by all kinds of people, from best to worst
● Where can user input data, and what damage can he do?
● Input data: Golden rule: always check and sanitise data from user!

– input data: form parameters (GET/URL and POST data), cookies, even
database

● Damage: Where does the problem show up?
– at other users (e.g. their password discovery)
– on the server (e.g. database data removal)

87 / 96

2.6 Notions of modern dynamic Web

88 / 96

Need of (higher-level) frameworks

● Web applications have lots of various parts: form handling,
HTML template processing, session management, database
access, authentication, internationalisation, and so on

● Frameworks provide solutions for some or all of those parts

89 / 96

Server-side scripts

● The past: CGI, JSP, ASP.NET
● The current: PHP with frameworks: symfony, zend
● Modern framework: Node.js
● Evolves much slower than client-side scripting

90 / 96

Client-side scripts
–the past–

● Vanilla JS (pure JS)
● Web 2.0 (mi-2000) used massively JS (ex.: google docs)
● JS standard evolved slowly => creation of TypeScript (generates JS), Flash,

Silverlight
● Since 10 years ago, JS has been promoted by W3C and evolves very fast

As of today

91 / 96

Client-side scripts
–asynchronous communication–

● Classical HTTP: client-initiated data, replaces current Web page
● HTTP with AJAX: client-initiated data, does not replace current

page
● WebSocket: both server and client-initiated data

– better reactivity (chat, sensors, games, ...)

92 / 96

Client-side scripts
–past present–

jQuery
● General-purpose library
● Eases DOM update, CSS animations

and AJAX

BootStrap
● Responsive
● CSS with a little bit of JS

(for visual rendering)

$(document).ready(function(){
 $("button").click(function(){
 $("#div1").fadeIn();
 $("#div2").fadeIn("slow");
 $("#div3").fadeIn(3000);
 });
});

93 / 96

Client-side scripts
–future present–

● Single-page applications
(SPA) : google/qwant maps, exampl
e et un autre

● React
– easy to start coding
– additional libraries are needed for

complex sites
● Angular

– Java-like coding
● Vue.js :

– declarative

import { Component } from '@angular/core';
@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'Hello World';
}

ReactDOM.render(
 <h1>Hello world!</h1>,
 document.getElementById('root')
);

new Vue({
 el: '#app',
 data: {
 message: 'Hello Vue.js!'
 }
})

https://view.genial.ly/5fb23f8172da7f14532e2950
https://view.genial.ly/5fb23f8172da7f14532e2950
https://view.genial.ly/61bc8adad79cd70dfd14f26b

94 / 96

Client-side scripts
–difficulties–

● Given the high number of frameworks, which
one is appropriate to my application?
– the frameworks are not simply libraries (providing

an API), but structure/define the application
(organisation and coding manner)

– sometimes the compatibility breaks (Angular.js ->
Angular)

● Correct Web indexing needs care:
– for complex and public Web sites,

pages generated on-the-fly and single-
page applications (SPA) break Web
indexing (e.g. onclick vs classical link)

95 / 96

Client-side scripts
–the future–

● Web development is not yet mature,
because frameworks evolve, and fast
(fierce competition)

● Lack of consensus: they answer different
needs; different ways of working

● Link to mobile applications (progressive
web applications)

● Interfaces evolve: keyboard-mouse, tactile
screen, smartphone, virtual reality?

96 / 96

Conclusions

● This course is only an introduction to Web technologies
● It is easy to write static HTML pages with some CSS, and

simple dynamic pages in PHP/MariaDB and JavaScript
● Modern Web sites written using JavaScript frameworks can be

complex and evolve very fast
– the Web technology is not yet mature

● Beautiful (successful) Web sites need artistic skills

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

