
Infrastructure & Routing for IoT 1 / 125

Infrastructure and routing for
connected objects

Eugen Dedu
Maître de conférences (associate professor)

Université de Franche-Comté, IUT Nord Franche-Comté
Master 1 IoT

Montbéliard, France
September 2024

http://eugen.dedu.free.fr
eugen.dedu@univ-fcomte.fr

"The more one pays attention to the Internet of Things (IoT),
the more one learns to appreciate simple, unconnected
devices. Your editor long ago acquired an aversion to
products that advertise themselves as "smart" or "WiFi-
enabled". There can be advantages, though [...] if they are
implemented well." [J. Corbet, https://lwn.net/Articles/940509]

http://eugen.dedu.free.fr/
mailto:eugen.dedu@univ-fcomte.fr
https://lwn.net/Articles/940509

Infrastructure & Routing for IoT 2 / 125

Organisation of the module

Hakim Mabed
2h TD, 9h labs

IoT modelling,
simulation on PacketTracer,

validation

Dominique Dhoutaut
2h TD, 9h labs

project to defend
(project with oral defence), w=.5

MQTT on real sensor/actuator hw,
RaspberryPI & Arduino,

data shown in a Web page

Eugen Dedu
12h CM, 8h TD, 6h labs

written exam of 1h30, w=.5

Communication protocols in IoT:
● MQTT, STOMP, AMQP, CoAP

● low-power & lossy wireless netw. prot.: RPL
Labs on a GNU/Linux machine

12h CM, 12h TD, 24h labs
Goal: upper-layer communication protocols in IoT,

radio technology excluded

Infrastructure & Routing for IoT 3 / 125

Organisation of the module
● Does not treat low-power low-level wireless IoT technologies, which will

be presented next semester in Radio networks (together with their
protocol, if any):

– Sigfox, LoRa (physical layer) and LoRaWAN (communication protocol and
system architecture)

● My TP/labs: bring your laptop with linux VM (preferably debian/ubuntu)

● My exam: on paper, no document authorised, whole CM + what I said +
questions from lab

Infrastructure & Routing for IoT 4 / 125

Requirements of IoT protocols

Infrastructure & Routing for IoT 5 / 125

IoT revolution?
● The Internet revolutionized how people

communicate and work together. But the
next wave of the Internet is not about
people. It’s about intelligent, connected
devices

● The IoT’s opportunity and challenge will be
to connect them in a meaningful way to
deliver truly distributed machine-to-machine
(M2M) applications

● 10 times more objects than users

● Where are all these devices? They are part
of the fabric of everyday life. In fact, you
own many of them! Recent cars use more
than 100 processors. Smart devices
pervade industrial systems, hospitals,
houses, transportation systems, and more.
Today, these systems are weakly
connected, but that will quickly change.

● The IoT and the intelligent systems it
enables will fundamentally change our
world.

The much-hyped IoT revolution simply hasn’t happened
to the extent many had anticipated. In 2015, Gartner
projected 25 billion connected devices by 2020. In 2019,
the firm lowered its 2020 outlook to 5.81 billion devices.

Infrastructure & Routing for IoT 6 / 125

M2M and its wider IoT
● Want it or not, more and more applications that we use today are connected
● M2M (machine to machine) and IoT both refer to devices communicating with each other
● M2M refers to isolated instances of device-to-device communication
● IoT refers to a grander scale, synergizing vertical software stacks to automate and manage

communications between multiple and heterogeneous devices
● M2M uses protocols embedded within hardware, IoT uses IP
● IoT is a broader concept than M2M
● M2M: machine to machine, without human intervention
● IoT: network of devices, connecting systems, people and applications
● IoT uses M2M
● “If you consider M2M in the next larger context, you get the IoT” [Landon Cox]

Infrastructure & Routing for IoT 7 / 125

Communication patterns in IoT –
request-response pattern

● Communication pattern: how messages are transported in the network to
accomplish certain tasks

● Request-response pattern: allows a client to get information in real-time from
another client, like HTTP

– examples: a client asks a server some information (e.g. temperature)

● Properties:

– if the response is slow to be collected, allow to return partial results to show progress; this
might be the case when communicating with devices behind gateways, behind which very
slow communication protocols are used

– interoperability problems: each client needs to know to talk to each server

Infrastructure & Routing for IoT 8 / 125

Communication patterns in IoT –
asynchronous messaging pattern

● Also known as “fire-and-forget” exchange

● The sender puts a message in message queue (event queue) and does not require an immediate response to continue processing

● Recipient might be out of office or simply not available

– e.g. sending an message, and the receiver is not in front of the computer, it is simply shown in the window at appropriate place

– the destination failed and is recovering, it will answer as soon as the failure is corrected

– e.g. intermittent connectivity (satellite communication)

● Advantages:

– solves the problem of intermittent connectivity

● Drawbacks:

– the broker must ensure that the message is received

– wait for an answer

Infrastructure & Routing for IoT 9 / 125

Message queuing – dead letter
queue

● The dead letter queue is a service implementation to store
messages in case of:
– message that is sent to a queue that does not exist
– queue length limit exceeded
– message length limit exceeded
– message is rejected by another queue exchange
– message reaches a threshold read counter number, because it is not

consumed (“back out queue”)
● It allows developers to look for common patterns and potential

software problems

Infrastructure & Routing for IoT 10 / 125

Communication patterns in IoT –
publish-subscribe (pub-sub) pattern

● Read Why the Internet of Things Needs Messaging

● Allows for mass distribution of information to interested parties in an efficient manner

● The publisher of information sends its information only once to the server, which then retransmits it to subscribers

● Allows a client to receive information from all clients of a given class (which have a specific function)

– example: a smartphone which receives all information from brightness sensors

● Subscribers subscribe to some class of information (e.g. temperature), and when some publisher of that class sends its
information to server, the latter automatically informs all the subscribers to that class

● An intermediate machine (server or broker or topic) which dispatches the messages it receives

● Properties:

– indirect communication, sender does not have to know precisely its receiver

– asynchronous

– heterogeneous platforms, easier to change or update

https://solace.com/blog/iot-needs-messaging/

Infrastructure & Routing for IoT 11 / 125

Publish-subscribe pattern
implementation

● This pattern consists of clients (publishers or subscribers) communicating with a server (“broker”)
– broker (représentant) = “one who transacts business for another; an agent” (Webster 1913)

● Senders of messages (publishers) do not send messages directly to receivers (subscribers), but to the
broker

● Similarly, subscribers express interest in one or more classes and receive only messages that are of
interest

● Neither publishers, nor subscribers know each other

● The broker receives messages and distribute them to subscribers which expressed interest in the
message topic

● Clients only interact with a broker, but a system may contain several broker servers that exchange
data based on their current subscribers' topics

Infrastructure & Routing for IoT 12 / 125

Message broker
● A broker is an intermediary computer program module that

translates a message from the formal messaging protocol of
the sender to the formal messaging protocol of the receiver

● Purpose: message validation, transformation, and routing
● In our context: routing: take message from sender and, after

filtering, forward it to appropriate receivers
● If a broker receives a topic for which there are no current

subscribers, it will discard the topic unless the publisher
indicates that the topic is to be retained (this allows new
subscribers to a topic to receive the most current value
rather than waiting for the next update from a publisher)

● When a publishing client first connects to the broker, it can
set up a default message to be sent to subscribers if the
broker detects that the publishing client has unexpectedly
disconnected from the broker

(wikipedia)

Infrastructure & Routing for IoT 13 / 125

Message broker
● For example, a message broker may be used to manage a workload

queue or message queue for multiple receivers, providing reliable
storage, guaranteed message delivery and perhaps transaction
management

● Route messages to one or more destinations

● Transform messages to an alternative representation

● Perform message aggregation, decomposing messages into multiple
messages and sending them to their destination, then recomposing the
responses into one message to return to the user

Infrastructure & Routing for IoT 14 / 125

Communication patterns in IoT –
push-pull pattern

● Or fan-out/fan-in

● It is about resource allocation, contrary to publish-subscribe

● Analogy with firemen: when a fire is detected, the broker sends this information to a car; when another fire occurs, the server selects
another car; and so on

– people (publishers) do not need to know details about firemen cars (number and availability)

– when a firemen car is added or removed, only the server needs to be informed

● In fan-out, messages are delivered to a pool of workers in a round-robin fashion and each message is delivered to only one worker

● Hence, the difference between pub-sub and push-pull is that a PUB socket sends the same message to all subscribers, whereas PUSH
does a round-robin amongst all its connected PULL sockets

● The pub/sub pattern is used for wide message distribution according to topics, whereas the push/pull pattern is really a pipelining
mechanism

● Fan-in allows to collect the results

Infrastructure & Routing for IoT 15 / 125

Useful features
● Provide the communication patterns presented

before
● Simplicity (cf. STOMP)
● Feature-richness (cf. AMQP)
● Popularity (cf. MQTT)
● ...

Infrastructure & Routing for IoT 16 / 125

Homework
● Read

Impact des objets sur l
es protocoles de l'Inter
net
 (generalities, RPL,
CoAP) – not available
anymore

● Read
Understanding IoT Pro
tocols

https://www.see.asso.fr/file/4377/download/28823
https://www.see.asso.fr/file/4377/download/28823
https://www.see.asso.fr/file/4377/download/28823
https://solace.com/blog/understanding-iot-protocols-matching-requirements-right-option/
https://solace.com/blog/understanding-iot-protocols-matching-requirements-right-option/

Infrastructure & Routing for IoT 17 / 125

MQTT

Infrastructure & Routing for IoT 18 / 125

MQTT
● Message Queuing Telemetry Transport

● First version in 1999, currently at version 5.0 (04/2019)

● ISO and OASIS standard

● Available at http://docs.oasis-open.org/mqtt/mqtt/v5.0/ (137 pages)

● Messaging protocol using exclusively the publish-subscribe messaging pattern

● Designed for connections with remote locations where a “small code footprint” is
required or the network bandwidth is limited: satellite links, occasional dial-up
connections with healthcare providers, a range of home automation and small device
scenarios

http://docs.oasis-open.org/mqtt/mqtt/v5.0/

Infrastructure & Routing for IoT 19 / 125

Standards organisations
● IETF – RFC, Internet protocols: TCP, IP, AV1, SIP, HTTP, ...
● ISO (International Organization for Standardization), ITU (International

Telecommunication Union), IEC (International Electrotechnical Commission) –
JPG, HEVC/H.265, ISO 9001 (système de management de la qualité),
OpenDocument, ISO/IEC Office Open XML (Microsoft's .docx), ITU H.323,
ISO/IEC HTML

● OASIS (Organization for the Advancement of Structured Information Standards)
– MQTT, OpenDocument

● IEEE (Institute of Electrical and Electronics Engineers) – 802.3 (Ethernet),
802.11 (Wi-Fi)

● many others

Infrastructure & Routing for IoT 20 / 125

MQTT topics
● Data (payload) is organised in a hierarchy of topics

● Senders of messages (publishers) do not send messages directly to receivers (subscribers), but instead categorise
their messages into topics and send them to the broker

● Topics are UTF-8 strings, with one or more topics separated by “/”, thus creating a hierarchy

– topic alias: in v5.0, they can be a number (allowing to reduce packet size)

● + wildcard in subscription matches any string for a single topic at that position

– “home/+/humidity” matches “home/kitchen/humidity” and “home/bedroom/humidity”, but does not match “home/kitchen”

● # wildcard as last character in subscription matches any string for zero or more topic levels

– “home/#” matches the topics “home”, “home/”, “home/kitchen” and “home/bedroom/temperature”

● Brokers automatically create the prefix #P2P/ for each client, which enables messages to be sent directly to that client
(for example, in request/reply scenarios)

Infrastructure & Routing for IoT 21 / 125

MQTT data
● At application layer, on top of TCP/IP, port 1883 (8883 if over TLS)

– MQTT-SN (for sensor networks) is a variation aimed on embedded
systems without TCP, such as Zigbee or Bluetooth

● MQTT sends connection credentials in plain text format and does not
include any measures for security or authentication; this can be
provided by the underlying TCP transport using measures to protect
the integrity of transferred information from interception or duplication

● A minimal MQTT control message can have from 2 bytes to nearly
256 MB of data

Infrastructure & Routing for IoT 22 / 125

MQTT message types
● Connect – waits for a connection to be

established with the server and creates a link
between the nodes

● Disconnect – waits for the MQTT client to finish
any work it must do, and for the TCP/IP session
to disconnect

● Publish – returns immediately to the application
thread after passing the request to the MQTT
client

● others

38

20

35

BrokerClient A

CONNECT

SUBSCRIBE
temperature/roof

PUBLISH
temperature/floor
20 °C

CONNACK

PUBLISH
temperature/roof
38 °C

Client B

PUBLISH
temperature/roof
38 °C

PUBLISH
temperature/roof
25 °C
retain✓

PUBLISH
temperature/roof
25 °C

25

38

DISCONNECT

Example of an MQTT connection (QoS 0) with connect,
publish/subscribe, and disconnect. The first message
from client B is stored due to the retain flag [wikipedia]

Infrastructure & Routing for IoT 23 / 125

MQTT packet types
● Reserved

● CONNECT, CONNACK

● PUBLISH, PUBACK, PUBREC, PUBREL, PUBCOMP

● SUBSCRIBE, SUBACK, UNSUBSCRIBE, UNSUBACK

● PINGREQ, PINGRESP

● DISCONNECT

● AUTH

Infrastructure & Routing for IoT 24 / 125

MQTT control packet format
● All MQTT packets are control packets, which have:

– fixed header, mandatory
● 1 byte: packet type (see previous slide) + specific flags

● 1 to 4 bytes: remaining length of this packet

– variable header, mandatory
● its length depends on the packet type

● examples: Packet identifier, Properties, Reason code (success, protocol error, not authorized, unsupported protocol
version etc.)

– payload, optional
● application specific

● details in the specification

Infrastructure & Routing for IoT 25 / 125

MQTT – quality of service (QoS)
● Each connection between broker and client can specify a QoS:

– level 0, at most once - the message is sent only once and the receiver takes no
additional steps to acknowledge delivery (fire and forget)

– level 1, at least once - the message is re-tried by the sender multiple times until
acknowledgement is received (acknowledged delivery)

– level 2, exactly once - the sender and receiver engage in a two-level handshake to
ensure only one copy of the message is received (assured delivery)

● This QoS is done at application level, between MQTT senders and
receivers, hence it does not interfere with TCP, which works at transport
level
– for example, TCP ensures that the sender's packet arrive from sender to broker, but

does not ensure that it arrives to all the subscribers (the broker might die in the
process) [link]

https://stackoverflow.com/questions/39277933/what-is-the-use-purpose-of-mqtt-qos

Infrastructure & Routing for IoT 26 / 125

MQTT – applications
● Facebook has used aspects of MQTT, but “it is unclear how much and for

what”
● Amazon Web Services announced Amazon IoT based on MQTT in 2015
● The OpenStack Upstream Infrastructure's services are connected by an

MQTT unified message bus with Mosquitto as the MQTT broker
● Microsoft Azure IoT Hub uses MQTT as its main protocol for telemetry

messages
● XIM, Inc. launched an MQTT client called MQTT Buddy in 2017, for Android

and iOS
● Open-source software home automation platform Home Assistant is MQTT

enabled and offers four options for MQTT brokers

Infrastructure & Routing for IoT 27 / 125

MQTT Debian packages
● mosquitto - MQTT version 5.0/3.1.1/3.1 compatible message broker

● mosquitto-clients - Mosquitto command line MQTT clients

● libmosquitto1 - MQTT version 5.0/3.1.1/3.1 client library

● libmosquittopp1 - MQTT version 5.0/3.1.1/3.1 client C++ library

● libmqtt-client-java - Java MQTT Client API

● node-mqtt-packet - parse and generate MQTT packets [for node.js]

● python3-paho-mqtt - MQTT client class (Python 3)

Infrastructure & Routing for IoT 28 / 125

MQTT – questions
● See also https://en.wikipedia.org/wiki/MQTT

● What OSI layer does MQTT work at? How many QoS
types does MQTT provide?

● How many message types does MQTT have? What is
the purpose of SUBACK message type and what does it
mean if the first byte of its payload is 1?

● What is shared subscription, a feature of MQTT v5.0?

https://en.wikipedia.org/wiki/MQTT

Infrastructure & Routing for IoT 29 / 125

STOMP

Infrastructure & Routing for IoT 30 / 125

STOMP
● Simple (or Streaming) Text Oriented Messaging Protocol
● First version appeared in 20xx, version 1.2 (2012), available at

http://stomp.github.io/stomp-specification-1.2.html (very short and easy to
understand)

● Text-based, similar to HTTP
● Clients and servers: https://stomp.github.io/implementations.html
● Main goals: simplicity and interoperability
● Very easy to write a client, “many developers have told us that they have

managed to write a STOMP client in a couple of hours to in their particular
language”
– you can use telnet as STOMP client

http://stomp.github.io/stomp-specification-1.2.html
https://stomp.github.io/implementations.html

Infrastructure & Routing for IoT 31 / 125

STOMP commands
● Client->server:

– CONNECT, DISCONNECT

– SEND

– SUBSCRIBE, UNSUBSCRIBE

– BEGIN, COMMIT, ABORT

– ACK, NACK

● Server->client:

– CONNECTED, MESSAGE, RECEIPT, ERROR

● The communication unit is called a “frame”

● Read the complete 1.0 specification (very easy to understand)

– see http://stomp.github.io/stomp-specification-1.2.html#Augmented_BNF for frame BNF

CONNECT
login: <username>
passcode:<passcode>

^@ <-- null (ctrl-@)

CONNECTED
session: <session-id>
^@

SEND
destination:/queue/a

hello queue a
^@

SUBSCRIBE
destination: /queue/foo
ack: client

^@

MESSAGE
destination:/queue/a
message-id: <message-identifier>
hello queue a^@

http://stomp.github.io/stomp-specification-1.2.html#Augmented_BNF

Infrastructure & Routing for IoT 32 / 125

STOMP Debian packages
● stompserver - stomp messaging server implemented in Ruby

● libnet-stomp-perl - Perl module providing a Streaming Text Orientated Messaging Protocol client

● php-stomp - Streaming Text Oriented Messaging Protocol (STOMP) client module for PHP

● python3-stomp - STOMP client library for Python 3

● python3-stomper - Python client implementation of the STOMP protocol (Python 3)

● python-stompy - Implementation of the STOMP protocol in Python

● ruby-stomp - Ruby client for the stomp messaging protocol

● syslog-ng-mod-stomp - Enhanced system logging daemon (STOMP plugin) – publish log
messages through the STOMP protocol

Infrastructure & Routing for IoT 33 / 125

AMQP

Infrastructure & Routing for IoT 34 / 125

AMQP
● Advanced Message Queuing Protocol

● OASIS standard 2012, [standard] (125 pages)

● ISO/IEC standard in 2014

● Defining features: message orientation, queuing, routing (including point-to-point and publish-and-subscribe), reliability
and security

● Application layer

● Binary

● Message delivery guarantee: at most once, at least once, exactly once

● Authentication and/or encryption based on SASL and/or TLS

● It assumes an underlying reliable transport layer protocol such as TCP

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf

Infrastructure & Routing for IoT 35 / 125

AMQP
● AMQP specification spans several layers:

– a type system – data description, used in messages
– transport layer – symmetric, asynchronous protocol on top

of TCP
– messaging layer – a standard, extensible message format
– transactional messaging – two roles: resource and

controller
– security layer – authenticated and/or encrypted transport

Infrastructure & Routing for IoT 36 / 125

AMQP type system
● Defines a rich self-describing encoding scheme allowing interoperable representation of a wide range of

commonly used types

● Used on packets exchanged between peers

● Primitive types, both common scalar values and common collections:

– scalar types: boolean, integral numbers (ubyte, ushort, uint, ulong, byte, short, int, long), floating point numbers (float,
double), timestamp, UUIDs, characters, strings, binary data, and symbols

– collection types: array (monomorphic), list (polymorphic), and map

● Described types, allows to annotate type with semantic information, e.g. URL, customer

● Composite types, composed of a sequence of fields, each with name, type, and multiplicity, and defined with
one or more descriptors, all of them described using XML

● Restricted types, which restrict values of an existing type (aka enumeration in programming languages)
<type name="array" class="primitive">
 <encoding name="array8" code="0xe0" category="array" width="1"
 label="up to 2^8 - 1 array elements with total size less than 2^8 octets"/>
 <encoding name="array32" code="0xf0" category="array" width="4"
 label="up to 2^32 - 1 array elements with total size less than 2^32 octets"/>
</type>

Infrastructure & Routing for IoT 37 / 125

AMQP protocol
● Nine AMQP frame bodies are defined, that are used to initiate, control and tear down the transfer of

messages between two peers:

– open (the connection)

– begin (the session)

– attach (the link)

– transfer

– flow

– disposition

– detach (the link)

– end (the session)

– close (the connection)

Infrastructure & Routing for IoT 38 / 125

AMQP protocol, message exchange
● The link protocol is at the heart of AMQP

● Connections between two peers are initiated with an open frame in which the sending peer's capabilities are
expressed, and terminated with a close frame.

● A connection can have multiple sessions multiplexed over it, each logically independent. A session is a
bidirectional, sequential conversation between two peers that is initiated with a begin frame and terminated
with an end frame. Multiple links, in both directions, can be grouped together in a session

● An attach frame body is sent to initiate a new link; a detach to tear down a link. Links may be established in
order to receive or send messages

● Messages are sent over an established link using the transfer frame. Messages on a link flow in only one
direction

● Transfers are subject to a credit based flow control scheme, managed using flow frames. This allows a
process to protect itself from being overwhelmed by too large a volume of messages or more simply to allow
a subscribing link to pull messages as and when desired.

● Each transferred message must eventually be settled. Settlement ensures that the sender and receiver agree
on the state of the transfer, providing reliability guarantees. Changes in state and settlement for a transfer (or
set of transfers) are communicated between the peers using the disposition frame. Various reliability
guarantees can be enforced this way: at-most-once, at-least-once and exactly-once.

Infrastructure & Routing for IoT 39 / 125

AMQP message format
● In HTTP, the message can contain a header and data
● The bare message = what is created by sender application, is immutable during

transit
– this allows for end-to-end message signing and/or encryption and ensures that any integrity

checks (e.g. hashes or digests) remain valid
● Intermediaries can add annotations to the message, which are added before or after

the bare message, yielding an annotated message
– the header is a standard set of delivery-related annotations that can be requested or

indicated for a message and includes time to live, durability, priority
● The bare message itself is structured as an optional list of standard properties

(message id, user id, creation time, reply to, subject, correlation id, group id etc.), an
optional list of application-specific properties (i.e., extended properties) and
application data (the body)

Infrastructure & Routing for IoT 40 / 125

AMQP transaction feature
● Transaction = several exchanges performed in atomic way: either all of

them, or none of them
– example: money transfer??

● Resource, controller, and coordinator
● Declare and discharge messages are sent by controller to allocate and

complete transactions, respectively
● If the control link is closed while there exist non-discharged transactions it

created, then all such transactions are immediately rolled back, and
attempts to perform further transactional work on them will lead to failure

● Transactional work: posting, acquiring, retiring a message

Infrastructure & Routing for IoT 41 / 125

AMQP security
● Not mandatory, but recommended
● TLS – data encryption
● SASL – peer authentication

Infrastructure & Routing for IoT 42 / 125

Debian packages – AMQP clients
● amqp-tools - Command-line utilities for interacting with AMQP servers (from RabbitMQ)

● golang-github-streadway-amqp-dev - Go client for AMQP 0.9.1

● libmessage-passing-amqp-perl - input and output message-pass messages via AMQP

● php-amqp - AMQP extension for PHP

● php-amqplib - pure PHP implementation of the AMQP protocol

● python3-aioamqp - AMQP implementation using asyncio (Python3 version)

● python3-amqp - Low-level AMQP client (Python3 version)

● python3-amqplib - simple non-threaded Python AMQP client library (Python3 version)

● python3-kombu - AMQP Messaging Framework for Python (Python3 version)

● python3-pika - AMQP client library for Python 3

● ruby-amqp - feature-rich, asynchronous AMQP client

● syslog-ng-mod-amqp - Enhanced system logging daemon (AMQP plugin)

● librabbitmq4 - AMQP client library written in C

● libanyevent-rabbitmq-perl - asynchronous and multi channel Perl AMQP client (from RabbitMQ)

Infrastructure & Routing for IoT 43 / 125

AMQP applications
● debci - continuous integration system for Debian

– scans the Debian archive for packages that contain
DEP-8 compliant test suites, and run those test suites
whenever a new version of the package [...] is available.
The requests are distributed to worker machines through
AMQP queues.

● syslog-ng-mod-amqp - Enhanced system logging
daemon (AMQP plugin)

Infrastructure & Routing for IoT 44 / 125

Other messaging protocols

Infrastructure & Routing for IoT 45 / 125

Other messaging protocols
XMPP

● much more complex than MQTT

● based on XML (Extensible Markup
Language)

● instant messaging: enables the near-real-
time exchange of structured yet extensible
data between any two or more network
entities

● client-server architecture, distributed system
(like e-mail: no central point)

● used by Facebook WhatsApp, Chat etc.

● DDS, Data Distribution Service – focus on real-time
communication

– aims to enable scalable, real-time, dependable, high-performance and
interoperable data exchanges using a publish-subscribe pattern

– appropriate to applications like autonomous vehicles, robotics,
transportation systems, power generation, medical devices,
aerospace and defense, and other real-time applications

– patents involved

● OPC UA, OPC Unified Architecture – focus on communicating
with industrial equipment and systems for data collection and
control

● WAMP, Web Application Messaging Protocol – based on
microservices

● MSMQ, Microsoft Message Queuing – based on queues

– closed source

Infrastructure & Routing for IoT 46 / 125

Brokers

Infrastructure & Routing for IoT 47 / 125

Questions
● “RabbitMQ is the most widely deployed open source

message broker”

● “Apache ActiveMQ is the most popular and powerful
open source messaging and Integration Patterns server”

● Why do they emphasize the broker (server), which is
only one part of the system?

● What features are important?

Infrastructure & Routing for IoT 48 / 125

Message broker software
● RabbitMQ, written in Erlang
● Apache ActiveMQ, written in Java

– both support MQTT, AMQP, STOMP etc.
– both: multiple platforms, several language bindings

● Mosquitto – MQTT-only
● Apache Qpid – AMQP-only
● Apache RocketMQ – OpenMessaging-only (MQTT and AMQP are planned

in the future)
● (OpenMQ, default JMS provider of GlassFish (Java EE – Jakarta EE

reference implementation))

Infrastructure & Routing for IoT 49 / 125

RabbitMQ and ActiveMQ Debian
packages

● rabbitmq-server - AMQP server written in Erlang
● librabbitmq-client-java - RabbitMQ Java library
● opensips-rabbitmq-module - Interface module to interact with a

RabbitMQ server – It is used to send AMQP messages to a
RabbitMQ server each time the Event Interface triggers an
event subscribed for

● activemq - Java message broker – server
● libactivemq-java - Java message broker core libraries

Infrastructure & Routing for IoT 50 / 125

CoAP

Infrastructure & Routing for IoT 51 / 125

CoAP motivation and assumption:
LLN, low power and lossy networks

● IoT uses a direct communication between devices
– sensors to some application software which adjusts some process
– sensors to personal appliances (appareils personnels)
– need for data exchange standards

● Devices (e.g. wireless sensors) are often tiny, embedded, in harsh
environment, ...

● => Constrained devices: energy, memory, processing capability etc. (“nodes
often have 8-bit µcontrollers”)

● => Constrained links: high loss rates, low data rates, instability etc. (“6LoWPAN
often have high packet error rates and a typical throughput of tens of kb/s”)

Infrastructure & Routing for IoT 52 / 125

CoAP
● Constrained Application Protocol

● IETF standard, RFC 7252 (2014)

● Available at https://tools.ietf.org/html/rfc7252 (112 text pages)

● Designed for constrained devices: multicast support, very low overhead, and simplicity

● It enables those constrained devices called “nodes” to communicate with the wider Internet using similar
protocols:

– between devices on the same constrained network (e.g., low-power, lossy networks)

– between devices and general nodes on the Internet

– and between devices on different constrained networks both joined by an internet

● CoAP is also being used via other mechanisms, such as SMS on mobile communication networks

https://tools.ietf.org/html/rfc7252

Infrastructure & Routing for IoT 53 / 125

CoAP features
● Uses the request/response model

● Simple subscription for a resource, and resulting push notifications (sensor->sink)

● Supports service and resource (through CoRE link format) discovery

● Simple caching based on max-age

● Asynchronous communication (place message in queue, answer can be sent later)

● “Since MQTT’s arrival as a standard, with its equal handling of constrained devices, and much broader feature set beyond that, few people are choosing
CoAP for new efforts” [solace]

● Uses a subset of HTTP for easy integration with the Web

– includes concepts of the Web, such as URI and Internet media types

– defines the mapping with HTTP, allowing proxies to be built providing access to CoAP resources via HTTP in a uniform way

– Web of things, where real objects become part of WWW

– thus, a complete networking stack of open-standard protocols that are suitable for constrained devices and environments becomes available

https://solace.com/blog/understanding-iot-protocols-matching-requirements-right-option/

Infrastructure & Routing for IoT 54 / 125

HTTP header for
requests/responses

Web page request:
GET /index.php HTTP/1.1
Host: rt.pu-pm.univ-fcomte.fr
User-Agent: Mozilla/5.0 (X11; Linux x86_64;
 rv:56.0) Gecko/20100101 Firefox/56.0
Accept: text/html,application/xhtml+xml,
 application/xml;q=0.9,*/*;q=0.8
Accept-Language: en
Accept-Encoding: gzip, deflate
Cookie: wiki_rt_session=[...]
Connection: keep-alive
Upgrade-Insecure-Requests: 1
Referer: ...

Web page response:
HTTP/1.1 200 OK
Date: Fri, 03 Nov 2018 20:34:18 GMT
Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny16
X-Powered-By: PHP/5.2.6-1+lenny16
Content-language: fr
Vary: Accept-Encoding,Cookie
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Cache-Control: private, must-revalidate, max-age=0
Last-modified: Mon, 30 Oct 2018 11:43:44 GMT
Content-Encoding: gzip
Content-Length: 5451
Content-Type: text/html; charset=UTF-8
Keep-Alive: timeout=5, max=98
Connection: Keep-Alive

<!DOCTYPE html>
<html>
...

Infrastructure & Routing for IoT 55 / 125

Use example
● A water meter is installed for at least 20 years,

and a sensor inside a wall cannot easily be
changed

● Internet protocols are chatty (“bavards”): they
send regularly packets, and are non
deterministic

● We need to avoid dynamic routes, collision
detection, continuous reception etc.

● A smartphone uses HTTP to request sensor's
temperature, the gateway changes it to CoAP
and sends it to the sensor; it stores its answer
and its validity duration given by sensor (it acts
as a cache), so that other requests do not
contact the sensor again

Sensor

Gateway

Smartphone

CoAP/UDP/6LoWPAN network
(IPv6 autoconfiguration, small stack size)

HTTP/TCP/IPv4 network
(available on all equipments)

Infrastructure & Routing for IoT 56 / 125

CoAP message structure
● Use simple, binary, base header format

● Fixed 4-byte header: version (01), type (one of the four, see next slide), token length, code (request/response
method)

● Token: between 0 and 8 bytes

● Options are in an optimized Type-Length-Value format

● The length of the message body (payload, as simple HTTP message) is implied by the datagram length;
when bound to UDP, the entire message must fit within a single datagram

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver| T | TKL | Code | Message ID |
 +-+
 | Token (if any, TKL bytes) ...
 +-+
 | Options (if any) ...
 +-+
 |1 1 1 1 1 1 1 1| Payload (if any) ...
 +-+

Infrastructure & Routing for IoT 57 / 125

CoAP message formats
● Four types of messages: Confirmable, Non-confirmable,

Acknowledgement, Reset

● Method Codes and Response Codes included in some of these
messages make them carry requests or responses

● Two types of data: requests and responses

– requests can be carried in Confirmable and Non-confirmable messages,
and responses can be carried in these as well as piggybacked in
Acknowledgement messages

● Bound to UDP by default, port 5683, with optional reliability

● Optionally uses DTLS (Datagram TLS, with similar features as TLS),
port 5684, providing a high level of communications security

 +----------------------+
 | Application |
 +----------------------+
 +----------------------+ \
 | Requests/Responses | |
 |----------------------| | CoAP
 | Messages | |
 +----------------------+ /
 +----------------------+
 | UDP |
 +----------------------+

Infrastructure & Routing for IoT 58 / 125

CoAP confirmable messages –
reliability

● Message ID is used to detect duplicates and for
optional reliability

● Reliability is provided by marking a message as
Confirmable (CON)

● A Confirmable message is retransmitted using a
default timeout and exponential back-off
between retransmissions (basic congestion
control), until the recipient sends an
Acknowledgement message (ACK) with the
same Message ID (e.g. 0x7d34) from the
corresponding endpoint (or runs out of attempts)

 Client Server
 | |
 | CON [0x7d34] |
 +----------------->|
 | |
 | ACK [0x7d34] |
 |<-----------------+
 | |

Infrastructure & Routing for IoT 59 / 125

CoAP non-confirmable messages
● A message that does not require reliable

transmission (for example, each single
measurement out of a stream of sensor
data) can be sent as a Non-confirmable
message (NON)

● These messages are not acknowledged,
but still have a Message ID for duplicate
detection

 Client Server
 | |
 | NON [0x01a0] |
 +----------------->|
 | |

Infrastructure & Routing for IoT 60 / 125

CoAP request-response exchange
● Uses GET, POST, PUT, DELETE, like HTTP
● Nodes may cache responses (up to max-age

value provided by server), and may be proxies
 Client Server Client Server
 | | | |
 | CON [0xbc90] | | CON [0xbc91] |
 | GET /temperature | | GET /temperature |
 | (Token 0x71) | | (Token 0x72) |
 +----------------->| +----------------->|
 | | | |
 | ACK [0xbc90] | | ACK [0xbc91] |
 | 2.05 Content | | 4.04 Not Found |
 | (Token 0x71) | | (Token 0x72) |
 | "22.5 C" | | "Not found" |
 |<-----------------+ |<-----------------+
 | | | |

Infrastructure & Routing for IoT 61 / 125

CoAP Debian packages
● libcoap3 - C-Implementation of CoAP - libraries

API version 2
● libcoap3-bin - C-Implementation of CoAP -

example binaries API version 2 (client and
server)

Infrastructure & Routing for IoT 62 / 125

CoAP – questions
● What does it mean service discovery in CoAP? How does it

work?
● Why do packets use a byte of value 255 before the payload

field?
● MQTT vs CoAP:

– MQTT: many2many, broker, appropriate for live data (event-based),
TCP (e.g. NAT-friendly)

– CoAP: one2one, direct communication, suited for state transfer, UDP
(e.g. NAT-unfriendly)

Infrastructure & Routing for IoT 63 / 125

Message-oriented middleware, implementation

Infrastructure & Routing for IoT 64 / 125

API, libraries
● Until now, we have seen protocols (MQTT, AMQP, XMPP), which, like

other protocols such as HTTP, POP3, SMTP, and SNMP, specify
message format, or data to send
– on the contrary, they do not specify an API, e.g. nobody forces you to use

function X to create HTTP header and function Y to append the HTML page

● Examples of MOM (messaging libraries):
– JMS (Java Message Service), Java

– ZeroMQ, cross-language
● supports pub-sub, push-pull, request-reply, router-dealer, ... patterns

Infrastructure & Routing for IoT 65 / 125

JMS – history
● 1995 – Sun creates Java language

● 2009–2010 – Oracle acquires Sun and maintains Java under Java Community Process (JCP)

● 2017 – Oracle transfers Java EE to Eclipse foundation, which decides to base it on Java 8, the current version at that time

● 02/2018 – Oracle does not want Java word in Java EE (Java means Oracle-made); community chooses Jakarta EE as the new
name for Java EE

● 09/2019 – Jakarta EE 8 released, compatible with Java EE 8

– (currently, Java EE is at v8, and Java SE is at v13)

● => two versions available:

– old: v6 from Oracle, with JMS v1.1 (maintenance release exists, v2.0a from 2015, from JCP, specification)

– new: v8 from Eclipse, with JMS v2.0a, the same as above

● => we will use the “stable” version from Oracle, v1.1, specification (2002, 125 pages) and tutorial

https://download.oracle.com/otn-pub/jcp/jms-2_0_rev_a-mrel-eval-spec/JMS20.pdf
http://download.oracle.com/otn-pub/jcp/7195-jms-1.1-fr-spec-oth-JSpec/jms-1_1-fr-spec.pdf
https://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html

Infrastructure & Routing for IoT 66 / 125

JMS features
● API specification allowing to create, send, receive, and read messages

● Part of Jakarta EE (ex-Java EE), which provides:

– publisher-subscriber and point-to-point models

– message topics

– message consumption: synchronous (receive) or asynchronous (listener)

– separation between application and transport layer ??

● Reduces the set of concepts needed by programmer to learn

● Low level, no protocol implemented => JMS systems are not interoperable

Infrastructure & Routing for IoT 67 / 125

JMS current (hopefully temporary)
installation mess

● Install a functional Java SE

● Download JMS: http://www.java2s.com/Code/Jar/j/Downloadjavaxjms111jar.htm (or
http://www.java2s.com/Code/Jar/j/Downloadjavaxjms110jar.htm ?)

● Needs GlassFish (Java EE official implementation), plus either NetBeans or Ant/appclient

● Too much movement

– JMS is based on old Java EE (2002), hence risk of problems

– currently, transition to Eclipse foundation, not yet finished

– GlassFish is not packaged in Debian

– GlassFish is almost stopped (last version 1 year ago, v5.0.0, end of commercial support); Payara (zip of 143 MB) replaces it, I fear potential
version problem

– tens of lines for the basic example

● => unappropriate to our lab

Infrastructure & Routing for IoT 68 / 125

RPL, IPv6 Routing Protocol for Low-Power and
Lossy Networks

Infrastructure & Routing for IoT 69 / 125

RPL
● RFC 6550 (standardised in 2012, 154 text pages), with special applications

(home and industrial automation, urban networks) specified in other RFCs

● Pronunciation: ripple (“vaguelette, ondulation”)

● Proactive routing protocol, specifies a mechanism to disseminate information
over dynamically formed network topology

● Multi-hop, can support thousands of nodes

● Operates (usually??) on IEEE 802.15.4, which provides physical and MAC layers
for protocols of LR-WPAN (low-rate wireless PAN), LLN (like CoAP)

– used also by Zigbee and 6LoWPAN (IPv6 over low-power wireless PAN)

https://en.wikipedia.org/wiki/RPL_(IPv6_Routing_Protocol_for_LLNs)

Infrastructure & Routing for IoT 70 / 125

RPL features
● Optimised for point-to-multipoint (one-to-many, from a central control point to a subset of

devices inside the LLN) and multipoint-to-point (many-to-one, from devices inside the LLN
towards a central control point), but supports also one-to-one (point-to-point, between devices
inside the LLN) communications

● Based on distance vectors (best route is based on distance, routers exchange their RT),
contrary to link-state (where routers exchange connectivity information)

● Nodes can be hosts and routers at the same time

● Supports a wide variety of link layers (contradiction??)

● Designed to be highly adaptive to network conditions, and to provide alternate routes when
default ones become unusable

● RPL quickly creates network routes, shares routing knowledge and adapts the topology
efficiently

Infrastructure & Routing for IoT 71 / 125

RPL topology
● LLNs do not typically have predefined topologies, so a topology

needs to be created

● RPL creates a topology similar to a tree (DAG, directed acyclic
graph)

– all edges are oriented

– no cycles exist

– can have several roots

● Rank = distance to a root node (0 for the root), such as number
of hops

● DODAG (destination-oriented DAG) = DAG with a single root
node

● A DODAG root may act as a border router for the DODAG, and
could route to external world through a common backbone using
other protocols

Course Guy Landry Djatche Simo

Course Pradeep Kumar Linux Wallgren et al.

Infrastructure & Routing for IoT 72 / 125

Examples

A single DODAG:
● A DODAG optimized

to minimize latency
rooted at a single
centralized lighting
controller in a Home
Automation application

Multiple uncoordinated DODAGs
with independent roots:

● Multiple data collection points in
an urban data collection
application that do not have
suitable connectivity to
coordinate with each other or
that use the formation of
multiple DODAGs as a means
to dynamically and
autonomously partition the
network

Infrastructure & Routing for IoT 73 / 125

Forwarding and routing
● Traffic moves either upwards (to a root), or downwards (from a root to a

node) inside a DODAG

● Upward path: mp2p, very common (collection point)

● Downward path: p2p and p2mp

● Nodes inform parents of their presence, and their descendants of its
reachability

● When going up, if no node with lower rank exists, go to sibling (brother)

● When going down, increase rank

Infrastructure & Routing for IoT 74 / 125

RPL instances and objective
function

● A DODAG has an optimisation objective, computed using an objective function and defined by
the application, e.g.:

– distance in terms of number of hops to root

– transmission energy minimisation, node remaining energy

– latency minimisation

– throughput maximisation

– node availability, link reliability

– etc., or application-specific constraints fulfilling

● RPL instance = one or several DODAGs with the same optimisation objective

● A network can run multiple, independent instances of RPL concurrently, with different
optimisation objectives

Infrastructure & Routing for IoT 75 / 125

MRHOF as an example of objective
function

● Minimum Rank with Hysteresis Objective Function (MRHOF) (RFC 6719) – minimize a
metric, while using hysteresis to reduce churn in response to small metric changes

● First, find the minimum cost path, i.e. path with the minimum rank

● Second, switch to that minimum rank path only if it is shorter (in terms of path cost) than
the current path by at least a given threshold (this second mechanism is called
“hysteresis”)

● MRHOF may be used with any additive metric as long as the routing objective is to
minimize the given routing metric

● Nodes must support at least one of these metrics: hop count, latency, or ETX (expected
transmission count for successfully reception)

● (Another example: OF0)

Infrastructure & Routing for IoT 76 / 125

RPL control message
● An ICMPv6 message (ICMP for IPv6, on top of

IPv6 header)
– other protocols using ICMPv6 messages: PMTU,

neighbour discovery
Depends on type Message + IPv6 pseudo-header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (155) | Code | Checksum |
 +-+
 | |
 . Base .
 . .
 +-+
 | |
 . Option(s) .
 . .
 +-+

ICMPv6 header

Additional
security header

(for secure variants)
Depend
on code

Infrastructure & Routing for IoT 77 / 125

RPL message types (codes)
● 0x00: DIS (DODAG

Information Solicitation)

● 0x01: DIO (DODAG
Information Object)

● 0x02: DAO (Destination
Advertisement Object)

● 0x03: DAO-ACK (DAO
Acknowledgment)

Secure variants, using CCM and
AES-128 encryption algorithms:

● 0x80: Secure DIS

● 0x81: Secure DIO

● 0x82: Secure DAO

● 0x83: Secure DAO-ACK

● 0x8A: Consistency Check

Infrastructure & Routing for IoT 78 / 125

RPL message codes
● DIS (solicitation): sent to a RPL node to request information

from nearby DODAG, analogous to router request messages
used to discover existing networks

● DIO (information): usually sent in response to DIS messages

– contains information about a RPL instance, its
configuration parameters (topology)

– allows to select a DODAG parent set, and maintain the
DODAG

Infrastructure & Routing for IoT 79 / 125

RPL message codes
● DAO (advertisement): sent by the teams to

propagate/update the information of their “parent”
nodes throughout the DAG
– sent by nodes towards root, either to a selected parent

(storing mode), or to the root (non-storing mode)
– a DODAG can work only in one mode at a time

● DAO-ACK: answer to a DAO, unicast

Infrastructure & Routing for IoT 80 / 125

Upward routes – discovery and
maintenance

● Typical LLNs exhibit variations in physical connectivity that are transient and
harmless to traffic, so a routing protocol is needed

● Initially, RPL consists of one or several roots
● The root(s) send periodically DIO messages

– they provide information about the DODAG, such as DODAG id, objective function used
– use Trickle algorithm to compute the spacing between them

● Upon reception, the node computes (integrates the DODAG) or updates its rank and
its parent by choosing the smallest possible rank (among all answers)

● A new node can also join a DODAG by sending a DIS message to request a DIO
message

Infrastructure & Routing for IoT 81 / 125

Trickle algorithm: ensuring
consistency with very low overhead

● The Trickle algorithm establishes a density-aware local communication primitive with
an underlying consistency model that guides when a node transmits. When a node's
data does not agree with its neighbors, that node communicates quickly to resolve
the inconsistency (e.g., in milliseconds). When nodes agree, they slow their
communication rate exponentially, such that nodes send packets very infrequently
(e.g., a few packets per hour). Instead of flooding a network with packets, the
algorithm controls the send rate so each node hears a small trickle of packets, just
enough to stay consistent.

● it is simple to implement; and requires very little state. Current implementations use
4–11 bytes of RAM and are 50–200 lines of C code

● Trickle's basic primitive is simple: every so often, a node transmits data unless it
hears a few other transmissions whose data suggest its own transmission is
redundant

● Details: RFC 6206 (2011)

https://tools.ietf.org/html/rfc6206

Infrastructure & Routing for IoT 82 / 125

Trickle algorithm
● Parameters:

– Imin, minimum interval, e.g. 100ms

– Imax, number of doublings, e.g. 16

– k, redundancy constant

● Variables:
– I, current interval size

– t, time within the current interval I

– c, counter

Simplified algorithm:

● I in [Imin,Imax]

● c=0, t random in [I/2,I)

● At consistent reception, c++

● At t, node transmits iff c<k

● When I expires, I doubles

● At inconsistent reception (or at
external “event”), I=Imin

Infrastructure & Routing for IoT 83 / 125

Downward routes
● Nodes send DAO messages containing their

sub-DODAG
● Parents aggregate them and thus discover

downward routes

Infrastructure & Routing for IoT 84 / 125

Storing and non-storing modes
Course Guy Landry Djatche Simo

RT on parents
DAO sent to parents

Unique RT on root
Updates sent only to it
DAO sent to root

Infrastructure & Routing for IoT 85 / 125

DODAG protection
● Various mechanisms are available to avoid loops, incoherences

and to repair the graph

● Loop avoidance and detection:
– uses IPv6's RPL option [RFC 6553]

– bit indicating transmission direction (up or down)

– upon message reception, a node compares its rank with the rank of
sending node

● Poisoning = setting rank to ∞ (poisoning) to avoid loop

Infrastructure & Routing for IoT 86 / 125

Security
RPL has three modes to support message confidentiality and
integrity:

● unsecured: RPL has no security feature, but link-layer could
provide them

● preinstalled: nodes joining a RPL instance have preinstalled
keys that enable them to process and generate secured RPL
messages

● authenticated: like preinstalled, but this allows to join only as
leafs; to be router, it is required to contact an authentication
authority to obtain a second key

Infrastructure & Routing for IoT 87 / 125

Homework
● More information:

– section 2.3.2 from Kamgueu's PhD thesis (in
French)

– slides 1–27 of The IoT/IP protocols
– read the whole RFC 6206 (Trickle)

http://docnum.univ-lorraine.fr/public/DDOC_T_2017_0241_KAMGUEU.pdf
https://www.slideshare.net/ADunkels/building-day-2-upload-building-the-internet-of-things-with-thingsquare-and-contiki-day-2-part-3
https://tools.ietf.org/html/rfc6206

Infrastructure & Routing for IoT 88 / 125

Implementation in OSes
● Contiki, small OS for small systems

● LiteOS

● TinyOS, uses events and guided tasks, uses nesC (extension of
C)

● RIOT, focuses on low-power wireless IoT devices

● etc.

● Why is not there any RPL package in Debian?

Infrastructure & Routing for IoT 89 / 125

Conclusions

Infrastructure & Routing for IoT 90 / 125

Conclusions
● IoT uses specific protocols, at application level generally (MOM)

● Several protocols and API for MOM exist

● The broker links all objects together, no matter the protocol

● Messaging paradigms: pub-sub, asynchronous messaging,
peer to peer

● Some protocols target low resources, others simplicity

● RPL creates routes in dynamic networks

Infrastructure & Routing for IoT 91 / 125

STOP

Infrastructure & Routing for IoT 92 / 125

Infrastructure & Routing for IoT 93 / 125

XMPP
● Extensible Messaging and Presence Protocol (XMPP)

● IETF standard, RFC 6120 (core, 211 text pages), 6121 (IM, 114 text pages), 7622, ...

● Much more complex than MQTT

● Developed in 1999 (previously called Jabber) for near real-time instant messaging (IM),
presence information, and contact list maintenance

● Based on XML (Extensible Markup Language)

● Enables the near-real-time exchange of structured yet extensible data between any two or
more network entities

● No QoS currently

Infrastructure & Routing for IoT 94 / 125

Instant messaging big picture
● Traditionally, IM applications have combined the following factors:

– the central point of focus is a list of one's contacts or "buddies" (in XMPP this list is called a "roster")
– the purpose of using such an application is to exchange relatively brief text messages with particular contacts in close to

real time -- often relatively large numbers of such messages in rapid succession, in the form of a one-to-one "chat
session"

– the catalyst for exchanging messages is "presence" -- i.e. information about the network availability of particular contacts
(thus knowing who is online and available for a one-to-one chat session)

– presence information is provided only to contacts that one has authorized by means of an explicit agreement called a
"presence subscription"

● Thus at a high level this document assumes that a user needs to be able to complete the following use
cases:

– manage items in one's contact list
– exchange messages with one's contacts
– exchange presence information with one's contacts
– manage presence subscriptions to and from one's contacts

Infrastructure & Routing for IoT 95 / 125

XMPP – architecture
● Client-server architecture
● Each client connect to a

sever
● Clients communicate only

with their server
● Distributed system, anyone

can run its own server and
there is no central server,
like e-mail

 example.net <--------------> im.example.com
 ^ ^
 | |
 v v
 romeo@example.net juliet@im.example.com

Infrastructure & Routing for IoT 96 / 125

XMPP – applications
● Numerous libraries (e.g. loudmouth) and applications

● Designed to be extensible, it has been used also for publish-subscribe systems, signalling for VoIP, video, file transfer,
gaming, the Internet of Things (IoT) applications such as the smart grid, and social networking services

● Several big companies integrated support for XMPP in their product, and dropped it later

– “The WhatsApp protocol is a slightly modified version of XMPP; it is deliberately modified so that it can only be used with
the WhatsApp program available from the company of the same name”

– “XMPP can support all the features that WhatsApp does, without the spying and poor security. Not all XMPP clients
support all features, but the popular ones will support photo sharing, VoiP etc.”

– “Facebook Chat and Gtalk internally use the Jabber protocol. Unlike WhatsApp, these companies used to allow reguular
XMPP clients to connect to their chat service, so you could use any Jabber program to chat with someone on Facebook
or Gtalk.”

– “Since I originally wrote this guide (early 2013; now mid 2017) this seems to be no longer the case; you can only connect
to Facebook with their proprietary client”

Infrastructure & Routing for IoT 97 / 125

XMPP messages
● Messages are based on XML

● On top of TCP, but can also on top of HTTP, allowing to bypass firewalls in Internet

● Three types of XML stanzas (complete XML fragment):

– message – “push” mechanism, asynchronous messaging

– presence (network availability), such as online/offline and available/busy etc. – publish-subscribe model
with delayed delivery (like MQTT)

– IQ (info/query or request-response) – HTTP-like

● Every user has a unique address, similar to an e-mail address: name@address, to which can be
added a resource, e.g. /mobile, separating several clients belonging to the same user

● Each resource can have a priority; sending to name@address will send to its highest priority resource

Infrastructure & Routing for IoT 98 / 125

XML
● Markup language (similar to

HTML)
● Human-readable and machine-

readable
● Goals: simplicity, generality,

usability across Internet wikipedia

Infrastructure & Routing for IoT 99 / 125

XMPP stream exchange, RFC 6120
● TCP
● TLS (through STARTTLS

extension): secure the
stream from tampering
(modify) and eavesdropping
(see)

● SASL: authentication
● XMPP

 I: <?xml version='1.0'?>
 <stream:stream
 from='juliet@im.example.com'
 to='im.example.com'
 version='1.0'
 xml:lang='en'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>

 R: <?xml version='1.0'?>
 <stream:stream
 from='im.example.com'
 id='++TR84Sm6A3hnt3Q065SnAbbk3Y='
 to='juliet@im.example.com'
 version='1.0'
 xml:lang='en'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>

Infrastructure & Routing for IoT 100 / 125

XMPP bindings
● Standard binding, using XML stanzas
● BOSH - Bidirectional streams over

Synchronous HTTP – through HTTP
● EXI, Efficient XML Interchange – compressed

XML, however its proposed specification has
expired...

Infrastructure & Routing for IoT 101 / 125

XMPP Debian packages
● prosody - Lightweight Jabber/XMPP server

● ejabberd - distributed, fault-tolerant Jabber/XMPP server

● python3-sleekxmpp - XMPP (Jabber) Library Implementing Everything as
a Plugin (Python 3.x)

● libtaningia0 - Taningia is a generic communication library based on
XMPP

● psi-plus - Qt-based XMPP client (basic version)

● ... and much more!

Infrastructure & Routing for IoT 102 / 125

XMPP – questions
● How can someone use XMPP to get the status

of the sensors in its home?
● What are the attributes which can be put in all

the three XML stanzas?

Infrastructure & Routing for IoT 103 / 125

Various interesting random slides

Infrastructure & Routing for IoT 104 / 125

Pub-sub model
● HTTP is synchronous – the Web page does not complete until server has answered

● Consider n sensors and m readers. Do all the sensors need to listen continuously the
network, to answer the requests? Do they answer each reader individually?

● Here, the pub-sub model fits very well

● Additionally, sensors do not need to process their data, they just send their data to broker,
which transforms it in temperature or the useful format

● The broker may be on Internet (cloud)

● Consider a temperature sensor in your greenhouse, which is measuring the temperature.
Your sensor could send the temperature to a message queue in a 15-minute interval
(about 96 times a day), instead of processing the data in the greenhouse and be
connected all the time.

Infrastructure & Routing for IoT 105 / 125

Publish/Subscribe
– each message can have multiple

consumers
– publishers and subscribers have a

timing dependency. A client that
subscribes to a topic can consume
only messages published after the
client has created a subscription, and
the subscriber must continue to be
active in order for it to consume
messages

Infrastructure & Routing for IoT 106 / 125

Point-to-point
● Read page

https://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html

● A point-to-point (PTP) product or application is built on the
concept of message queues, senders, and receivers

● Queues retain all messages sent to them until the messages are
consumed or expire

– each message has only one consumer

– a sender and a receiver of a message have no timing
dependencies. The receiver can fetch the message whether or
not it was running when the client sent the message

– the receiver acknowledges the successful processing of a
message

https://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html

Infrastructure & Routing for IoT 107 / 125

● An enterprise application provider is likely to choose a
messaging API over a tightly coupled API, such as a remote
procedure call (RPC), under the following circumstances
– The provider wants the components not to depend on information

about other components’ interfaces, so components can be easily
replaced

– The provider wants the application to run whether or not all
components are up and running simultaneously

– The application business model allows a component to send
information to another and to continue to operate without receiving an
immediate response

Infrastructure & Routing for IoT 108 / 125

● Messaging = a method of communication between software
componets and applications, loosely coupled
– it is different than e-mail, which is used by people

● On the contrary, RMI (Remote Method Invocation) is tightly coupled,
since the sender must know recipient's methods, and both parties
need to be available at the same time

● Sockets too need that both parties be available, whereas queuing
takes the message and sends it to destination when it becomes
available

Infrastructure & Routing for IoT 109 / 125

Communication patterns in IoT –
router-dealer (shared queue) pattern

– questions● How it works
● Find the difference compared to the simpler

pub-sub pattern

Infrastructure & Routing for IoT 110 / 125

What IoT communication patterns
do classical protocols provide?

● IP:

– allows only direct communication (sender has to know precisely its receiver)

– no QoS

– synchronous (receiver must be able to receive messages)

– generally one sender and one receiver (even if multicast allows some form of function-based communication with only
one sender)

– etc.

● HTTP:

– allows only direct communication

– heavy (e.g. see HTTP header)

– etc.

Infrastructure & Routing for IoT 111 / 125

AMQP – questions
● What are the AMQP features concerning flow

control?
● How can packets get reordered when in transit?

Infrastructure & Routing for IoT 112 / 125

AMQP TODO
● Provides:

– pub-sub
– point-to-point
– request-response
– fan-out ??
– reliability

Infrastructure & Routing for IoT 113 / 125

AMQP architecture
● The link protocol transfers messages between two nodes but assumes very little as to what those nodes are or how they are

implemented

● A key category is those nodes used as a rendezvous point between senders and receivers of messages (e.g. queues or topics).
The AMQP specification calls such nodes distribution nodes and codifies some common behaviors

● This includes:

– some standard outcomes for transfers, through which receivers of messages can for example accept or reject messages

– a mechanism for indicating or requesting one of the two basic distribution patterns, competing- and non-competing- consumers,
through the distribution modes move and copy respectively

– the ability to create nodes on-demand, e.g. for temporary response queues

– the ability to refine the set of message of interest to a receiver through filters

● Though AMQP can be used in simple peer-to-peer systems, defining this framework for messaging capabilities additionally
enables interoperability with messaging intermediaries (brokers, bridges etc.) in larger, richer messaging networks

Infrastructure & Routing for IoT 114 / 125

Protocol comparison

Infrastructure & Routing for IoT 115 / 125

MQTT
● It’s important to understand the class of use that each of these important protocols [mqtt, xmpp

etc.] addresses
● MQTT targets device data collection (Fig. 3). As its name states, its main purpose is telemetry,

or remote monitoring. Its goal is to collect data from many devices and transport that data to the
IT infrastructure. It targets large networks of small devices that need to be monitored or
controlled from the cloud.

● MQTT enables applications like monitoring a huge oil pipeline for leaks or vandalism. Those
thousands of sensors must be concentrated into a single location for analysis. When the system
finds a problem, it can take action to correct that problem. Other applications for MQTT include
power usage monitoring, lighting control, and even intelligent gardening. They share a need for
collecting data from many sources and making it available to the IT infrastructure.

● a lightweight broker-based publish/subscribe messaging protocol designed to be open,
simple, lightweight and easy to implement

● It targets large networks of small devices that need to be monitored or controlled from the cloud

Infrastructure & Routing for IoT 116 / 125

MQTT
● The design principles and aims of MQTT are much more simple and focused than those of

AMQP—it provides publish-and-subscribe messaging (no queues, in spite of the name) and was
specifically designed for resource-constrained devices and low bandwidth, high latency
networks such as dial up lines and satellite links, for example. Basically, it can be used
effectively in embedded systems.

● One of the advantages MQTT has over more full-featured “enterprise messaging” brokers is that
its intentionally low footprint makes it ideal for today’s mobile and developing “Internet of Things”
style applications.

● MQTT’s strengths are simplicity (just five API methods), a compact binary packet payload (no
message properties, compressed headers, much less verbose than something text-based like
HTTP), and it makes a good fit for simple push messaging scenarios such as temperature
updates, stock price tickers, oil pressure feeds or mobile notifications. It is also very useful for
connecting machines together, such as connecting an Arduino device to a web service with
MQTT.

Infrastructure & Routing for IoT 117 / 125

MQTT
● mainly used when a huge network of small devices needs to be monitored or managed via the Internet, i.e. parking sensors,

underwater lines, energy grid, etc.
● Pros
● Lightweight for constrained networks
● Flexibility to choose Quality of Services with the given functionality
● Standardized by OASIS Technical Committee
● Easy and quick to implement
● Cons
● High power consumption due to the TCP-based connection
● Lack of encryption [??????????? The Mosquitto broker supports TLS out of the box]
● Use Case
● A parking lot where there are a number of parking sensors installed to identify the number and location of empty or vacant

parking spots

Infrastructure & Routing for IoT 118 / 125

MQTT
● Mosquitto [or MQTT ??] can be configured as a so-called

“bridge”. I could imagine this being useful in, say, different
data centers.

● In a bridge configuration, Mosquitto is configured to pass
certain topics in certain directions. For example, I could
configure a bridge to notify a “central” broker for messages
of topic +/important.

● Mosquitto periodically publishes statistics which interested
parties can subscribe to, e.g. for monitoring purposes.

● The Mosquitto project has a test server
http://test.mosquitto.org/ you can use if you don’t want to
set up your own (just launch mosquitto_sub at it),

$SYS/broker/version mosquitto version 1.1
$SYS/broker/clients/total 368
$SYS/broker/clients/active 91
$SYS/broker/clients/inactive 277
$SYS/broker/clients/maximum 368
$SYS/broker/messages/received 13358099
$SYS/broker/messages/sent 16381123
$SYS/broker/messages/dropped 414180
$SYS/broker/messages/stored 10806
$SYS/broker/messages/sent 16381123
$SYS/broker/messages/sent 16381123
$SYS/broker/bytes/received 761223497
$SYS/broker/bytes/sent 476065843
$SYS/broker/load/bytes/sent/1min 28745.93
$SYS/broker/load/bytes/sent/5min 15418.24
$SYS/broker/load/bytes/sent/15min 6980.69
[...]

http://test.mosquitto.org/

Infrastructure & Routing for IoT 119 / 125

XMPP
● Its key strength is a name@domain.com addressing scheme that helps connect the needles in the huge Internet

haystack.

● In the IoT context, XMPP offers an easy way to address a device

● XMPP provides a great way, for instance, to connect your home thermostat to a Web server so you can access it from
your phone. Its strengths in addressing, security, and scalability make it ideal for consumer-oriented IoT applications.

● Cons:

– Text-based messaging, no end-to-end encryption provision

– No Quality of Service provision

● Use cases:

– A smart thermostat that can be accessed from a smartphone via a web server

– A gaming console with instant messaging between the two online players

Infrastructure & Routing for IoT 120 / 125

AMQP
● AMQP is all about queues
● AMQP is focused on not losing messages
● The standard also describes an optional transaction mode with a formal multiphase commit sequence
● AMQP is mostly used in business messaging
● True to its origins in the banking industry, AMQP focuses on tracking messages and ensuring each message is delivered as

intended, regardless of failures or reboots.
● Pros
● Messages can be sent over TCP and UDP
● Provides end-to-end encryption
● Cons
● Relatively high resource utilization, i.e. power and memory usage
● Use Cases

– AMQP is mostly used in business messaging. It usually defines devices like mobile handsets, communicating with back-office data centers

Infrastructure & Routing for IoT 121 / 125

AMQP
● Two of the most important reasons to use AMQP are reliability and interoperability. As

the name implies, it provides a wide range of features related to messaging, including
reliable queuing, topic-based publish-and-subscribe messaging, flexible routing,
transactions, and security. AMQP exchanges route messages directly—in fanout
form, by topic, and also based on headers.

● There’s a lot of fine-grained control possible with such a rich feature set. You can
restrict access to queues, manage their depth, and more. Features like message
properties, annotations and headers make it a good fit for a wide range of enterprise
applications. This protocol was designed for reliability at the many large companies
who depend on messaging to integrate applications and move data around their
organisation. In the case of RabbitMQ, there are many different language
implementations and great samples available, making it a good choice for building
large scale, reliable, resilient, or clustered messaging infrastructures.

Infrastructure & Routing for IoT 122 / 125

AMQP
● Companies like JP Morgan use it to process 1 billion messages

a day. NASA uses it for Nebula Cloud Computing. Google uses
it for complex event processing. Here are a couple of additional
AMQP examples and links:

● It is used in one of the world’s largest biometric databases
India’s Aadhar project—home to 1.2 billion identities.

● It is used in the Ocean Observatories Initiative—an
architecture that collects 8 terabytes of data per day.

● More examples and links are available at amqp.org.

Infrastructure & Routing for IoT 123 / 125

STOMP
● The design principles here were to create something simple, and widely-interoperable. For

example, it’s possible to connect to a STOMP broker using something as simple as a telnet
client.

● STOMP does not, however, deal in queues and topics—it uses a SEND semantic with a
“destination” string. The broker must map onto something that it understands internally such as
a topic, queue, or exchange. Consumers then SUBSCRIBE to those destinations. Since those
destinations are not mandated in the specification, different brokers may support different
flavours of destination. So, it’s not always straightforward to port code between brokers.

● However, STOMP is simple and lightweight (although somewhat verbose on the wire), with a
wide range of language bindings. It also provides some transactional semantics. One of the
most interesting examples is with RabbitMQ Web Stomp which allows you to expose messaging
in a browser through websockets. This opens up some interesting possibilities—like updating a
browser, mobile app, or machine in real-time with all types of information.

Infrastructure & Routing for IoT 124 / 125

Comparison between MQTT and
XMPP

● MQTT: publish-subscribe model
● XMPP: P-S model, IQ (request-response),

Infrastructure & Routing for IoT 125 / 125

● The thing I don’t like about MQTT is that every device must be configured
with the address of a broker. This is an extra configuration step, and the
broker can become a single point of failure; if it goes down, all devices are
unusable. I prefer point-to-point self configuring protocols such as ZeroMQ

● A high level overview of the protocols behind such communication include
MQTT, XMPP, DDS, and AMQP. Although the four protocols do overlap
somewhat in nature, each generally targets a specific function in IoT. MQTT
targets device data collection. XMPP is ideal for consumer oriented
applications as it focuses on addressing, security, and scalability. DDS
concentrates on devices that use device data. Finally, AMQP is primarily a
queueing protocol.

● https://www.electronicdesign.com/iot/understanding-protocols-behind-
internet-things

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125

