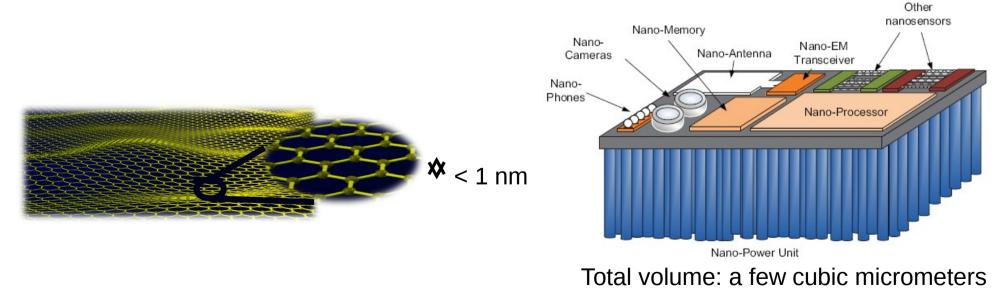


Nanonetwork Minimum Energy coding

Muhammad Agus Zainuddin, Eugen Dedu, Julien Bourgeois

UFC/FEMTO-ST Institute, UMR CNRS 6174, France

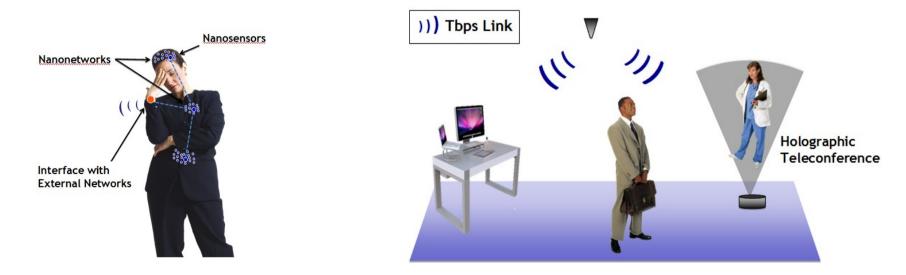
IEEE UIC 2014, Bali, Indonesia


Outline

- Background: Nanosensor Networks
- Nanonetwork Minimum Energy (NME) Coding
 - Method
 - Simulation results
- Conclusion & Future works

Nanosensor Networks

- Nanotechnology enables nano-devices to generate, process, and transmit information at atomic scale
- Material: Graphene, a one-atom thick planar sheet of bonded carbon atoms in a honeycomb crystal lattice
- Nanosensor components: nano-processors, nano-merories, nano-sensors, and nano-transcievers



Nanosensor Networks

Application:

- Biomedical: Anti-microbiology, drug delivery system
- Secure and Defence: forensic, NBC attack
- Multimedia: 3D holographic video conference

Nanosensor Networks

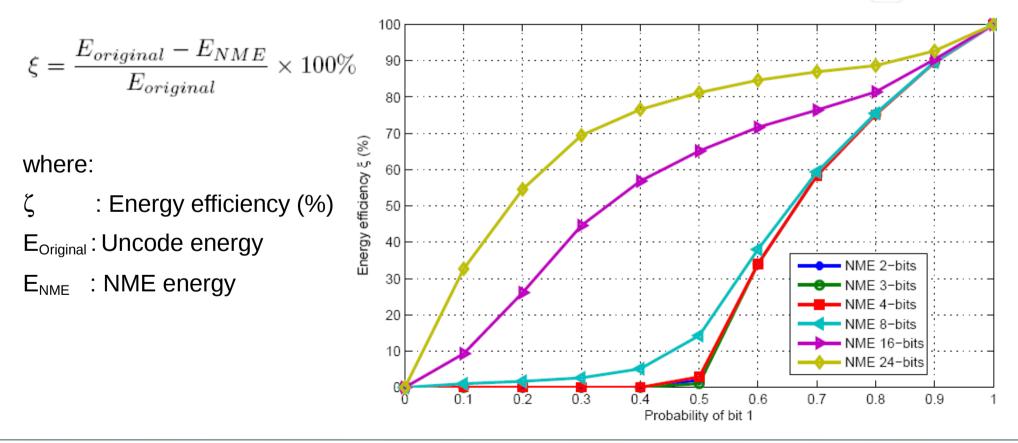
Problems:

 Small dimension -> small capabilities: Battery capacity, complexity, transmission range

Solutions:

- Nanonetwork: networking of nanosensors.
- Coding and Modulation:
 - Time Spread On Off Keying (TS-OOK)
 - Minimum Energy Source coding

- Reducing the number of bit 1:
 - Energy efficiency
 - Reduce: molecular absorbtion noise and multi-user interference
 - Increase: channel capacity
- NME algorithm:
 - Segmentize the binary input sequence into blocks (symbols) of n bits
 - Create a table of used symbols and their frequency
 - Create another table by sorting the symbols in decreasing order of frequency and maps to codeword with fewer bit 1



Simulation results:

- Validation: real files
- Metrics to evaluate NME:
 - Energy Efficiency
 - Robustness during transmission
 - Codeword Error Rate
 - Peak Signal to Noise Ratio (PSNR) in Image transmission

Energy Efficiency

Energy efficiency

Coding	Number of 1s in dictionary (bits)	Number of 1s in data (bits)	Number of 1s in total (bits)	Energy efficiency (%)	Dictionary length (byte)	Max dictionary length (byte)
Original	-	-	3,763,743	-	-	_
NME 2 bit	4	3,735,368	3,735,372	0.76	1	1
NME 3 bit	12	3,716,347	3,716,359	1.26	3	3
NME 4 bit	32	3,708,997	3,709,029	1.45	8	8
NME 8 bit	1,024	3,665,543	3,666,567	2.58	0.25 k	0.25 k
NME 16 bit	523,358	3,389,503	3,912,861	-3.96	127.8 k	128 k
NME 24 bit	3,708,769	1,961,620	5,670,389	-50.66	923 k	48 M

NME PERFORMANCE FOR NEWS_CIF.MP4 FILE (0.92 MB)

Coding	Number of 1s in dictionary (bits)	Number of 1s in data (bits)	Number of 1s in total (bits)	Energy efficiency (%)	Dictionary length (byte)	Max dictionary length (byte)
Original	_	_	5,607,698	_	_	_
NME 2 bit	4	5,569,261	5,569,265	0.69	1	1
NME 3 bit	12	5,392,470	5,392,482	3.84	3	3
NME 4 bit	32	4,428,079	4,428,111	21.04	8	8
NME 8 bit	1,024	3,326,281	3,327,305	40.67	0.25 k	0.25 k
NME 16 bit	271,466	2,372,978	2,590,444	53.81	54.3 k	128 k
NME 24 bit	1,980,761	1,891,442	3,872,203	30.95	0.5 M	48 M

NME PERFORMANCE FOR BUS_QCIF.YUV FILE (1.38 MB)

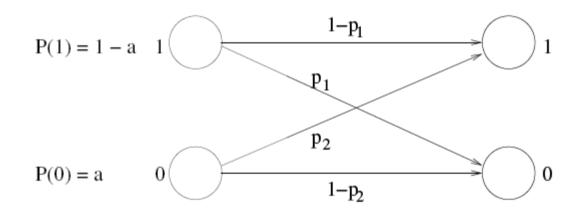
Energy efficiency

Coding	Number of 1s in dictionary (bits)	Number of 1s in data (bits)	Number of 1s in total (bits)	Energy efficiency (%)	Dictionary length (byte)	Max dictionary length (byte)
Original	_	-	260,762	-	_	_
NME 2 bit	4	245,266	245,270	5.94	1	1
NME 3 bit	12	252,038	252,050	3.34	3	3
NME 4 bit	32	223,466	223,498	14.29	8	8
NME 8 bit	1,024	198,315	199,339	23.56	0.25 k	0.25 k
NME 16 bit	76,974	131,903	208,877	19.90	19.3 k	128 k
NME 24 bit	229,518	89,270	318,788	-22.25	57.3 k	48 M

NME PERFORMANCE FOR LENA. BMP FILE (65.1 KB)

Coding	Number of 1s in dictionary (bits)	Number of 1s in data (bits)	Number of 1s in total (bits)	Energy efficiency (%)	Dictionary length (byte)	Max dictionary length (byte)
Original	_	_	132,740	_	_	_
NME 2 bit	4	132,386	132,390	0.26	1	1
NME 3 bit	12	132,294	132,306	0.33	3	3
NME 4 bit	32	130,010	130,042	2.03	8	8
NME 8 bit	1,024	122,955	123,979	6.60	0.25 k	0.25 k
NME 16 bit	108,405	82,463	190,868	-43.79	26.7 k	128 k
NME 24 bit	132,011	42,469	174,480	-31.44	33 k	48 M

NME PERFORMANCE FOR LENA. JPG FILE (33.2 KB)


Coding	Number of 1s in dictionary (bits)	Number of 1s in data (bits)	Number of 1s in total (bits)	Energy efficiency (%)	Dictionary length (byte)	Max dictionary length (byte)
Original	_	_	1,680,819	_	_	_
NME 2 bit	4	1,518,325	1,518,329	9.67	1	1
NME 3 bit	12	1,544,009	1,544,021	8.14	3	3
NME 4 bit	32	1,382,547	1,382,579	17.74	8	8
NME 8 bit	1,024	1,093,100	1,094,124	34.91	0.25 k	0.25 k
NME 16 bit	212,215	820,857	1,033,072	38.54	53.7 k	128 k
NME 24 bit	726,974	596,478	1,323,452	21.26	0.19 M	48 M
					(0. (0.) (D))	

NME PERFORMANCE FOR ADOBEUPDATER.DLL FILE (0.49 MB)

Robustness during transmission

Channel model: Binary Asymmetric Channel (BAC)

Where:

P(1) : probability of bit 1

P(0) : probability of bit 0

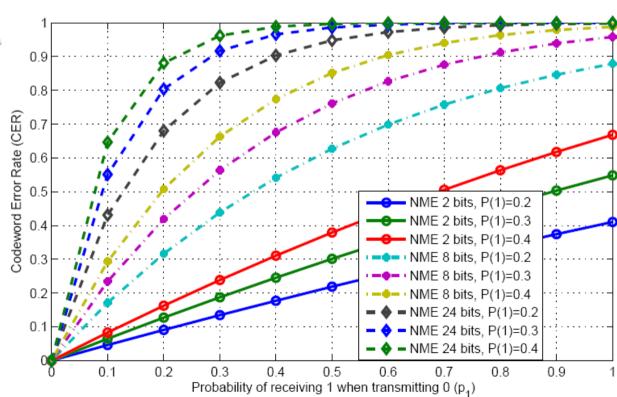
- p_1 : probability of receive 0 when transmitte 1
- p_2 : probability of receive 1 when transmitte 0

Robustness during transmission

Codeword Error Rate

$$CER = 1 - (1 - p_2 P(0) - p_1 P(1))^n$$

Where:


CER: Codeword error rate

P(1) : probability of bit 1

P(0) : probability of bit 0

- p_1 : probability of bit 1 error
- p2 : probability of bit 0 error

n : NME n bits

Robustness during transmission

Image transmission: lena256.bmp

$$e(x,y) = I_i(x,y) - I_o(x,y)$$

$$E_{ms} = \frac{1}{AB} \sum_{x=0}^{A-1} \sum_{y=0}^{B-1} e(x,y)^2$$

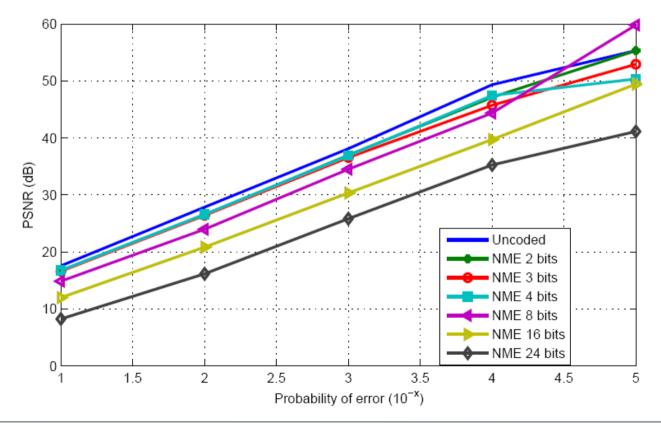
$$PSNR(dB) = 10\log_{10}\left(\frac{255^2}{E_{ms}}\right)$$

Where:

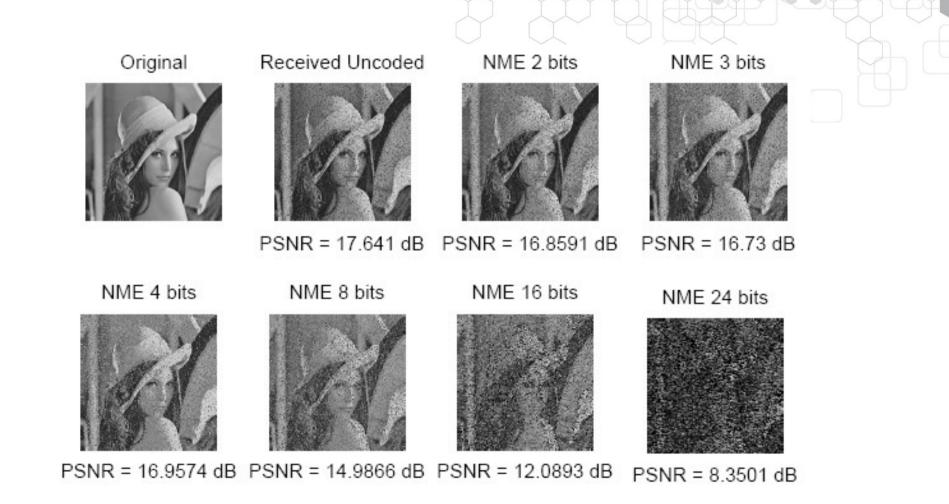
e(x,y) : distortion

 $I_i(x,y)$: transmitted image

 $I_o(x,y)$: received image


 E_{ms} : mean square error

PSNR : Peak signal to noise ratio



Robustness during transmission

Image transmission: lena256.bmp

Received lena.bmp image when transmitted through a BAC channel with $p_1 = 0.1$ and $p_2 = 0.004$

Conclution & Future Works

Conclusion

- Nanonetwork has limitation in battery capacity
- NME code is able to reduce the energy consumption (number of 1) in transmitted data
- The larger number of n bits in NME code is able to increase energy efficiency but more vulnerable to error during transmission

Conclution & Future Works

Future works

- We will compare the code performance with other source codes for nanonetwork
- We will investigate the code performance in molecular noise and multi-user interference reduction

References

[1]	J. M. Jornet and I. F. Akyildiz, "The Internet of Multimedia Nano-Things," Nano Communication
	Networks (Elsevier) Journal, vol. 3, no. 4, pp. 242-251, December 2012

- [2] P. Wang, J. M. Jornet, M. G. A. Malik, N. Akkari, and I. F. Akyildiz, "Energy and Spectrum-aware MAC Protocol for Perpetual Wireless Nanosensor Networks in the Terahertz Band," Ad Hoc Networks (Elsevier) Journal, vol. 11, no. 8, pp. 2541-2555, November 2013
- [3] I. F. Akyildiz and J. M. Jornet, "Electromagnetic Wireless Nanosensor Networks," Nano Communication Networks (Elsevier) Journal, vol. 1, no. 1, pp. 3-19, March 2010
- [4] G. Piro, L. A. Grieco, G. Boggia, and P. Camarda. Nano-sim: Simulating electromagnetic-based nanonetworks in the network simulator 3. In Proceedings of the 6th International ICST Conference on Simulation Tools and Techniques, SimuTools '13, pages 203–210, ICST, Brussels, Belgium, Belgium, 2013
- [5] D. Saladino, A. Paganelli, and M. Casoni. A tool for multimedia quality assessment in NS3: QoE Monitor. Simulation Modelling Practice and Theory, 32:30–41, Mar. 2013
- [6] J. M. Jornet, "Enabling Nanoscale Machine Communication in the Terahertz Band", Presentation Slides, AIM, 2014

