1/22



A Framework to Calibrate a MEMS Sensor Network

Kahina Boutoustous, Eugen Dedu and Julien Bourgeois

University of Franche-Comté, France

UIC, Brisbane, Australia 08/07/09



## Plan

### 1 Introduction (Smart Surface project)

- 2 Related work
  - Micro-manipulator
  - Differentiation methods
- 3 SNC (Sensor Network Calibrator)
- 4 Results





## Smart Surface project

#### Objectives

An autonomic surface, composed of a large number of micro-actuators which work together to sort and position micro-objects



## Smart Surface project

#### Objectives

An autonomic surface, composed of a large number of micro-actuators which work together to sort and position micro-objects



SNC



3/22 Kahina Boutoustous, Eugen Dedu and Julien Bourgeois

## Smart Surface project

#### Problematic

- Collaboration of several laboratories in various disciplines
- Open problems in each scientific field



## Smart Surface project

#### Problematic

- Collaboration of several laboratories in various disciplines
- Open problems in each scientific field



## Smart Surface project

#### Problematic

- Collaboration of several laboratories in various disciplines
- Open problems in each scientific field



Micro-manipulator Differentiation methods

# Related work

#### Micro-manipulator without contact

• Electromagnetic, pneumatic

#### Advantages

- More robust
- Can't damage the part and/or the surface

#### Drawbacks

- High cost
- More complicate to design
- Difficult to control, precision problem

Micro-manipulator Differentiation methods

#### Related work Example of a micro-manipulator with out contact

#### Electromagnetic

H. Nakazawa, Y. Watanabe, O. Morita, M. Edo, and E. Yonezawa. The two-dimensional micro conveyer : principles and fabrication process of the actuator. Solid State Sensors and Actuators, 1997. TRANSDUCERS '97 Chicago., 1997 International Conference on, 1 :33{36, Jun 1997.}



Micro-manipulator Differentiation methods

# Related work

#### Micro-manipulator with contact

• Ciliary actuator arrays, electrostatics, roller wheels

#### Advantages

- Easier to design
- Can move heavier objects

#### Drawbacks

- Lower speed
- Less robust
- Can damage the part and/or the surface

7/22 Kahina Boutoustous, Eugen Dedu and Julien Bourgeois SNC

Micro-manipulator Differentiation methods

#### Related work Example of a micro-manipulator with contact

#### Roller

Jonathan E. Luntz, William Messner, and Howie Choset. Parcel manipulation and dynamics with a distributed actuator array : The virtual vehicle. In IEEE Int. Conf. on Robotics and Automation (ICRA), pages 1541{1997.}



Micro-manipulator Differentiation methods

#### Related work Differentiation methods





9/22 Kahina Boutoustous, Eugen Dedu and Julien Bourgeois SNC

Micro-manipulator Differentiation methods

#### Related work Differentiation methods : Grid based



10/22 Kahina Boutoustous, Eugen Dedu and Julien Bourgeois

SNC How many sensors are needed to differentiate three parts?

#### Objectives

 Determine the number of sensors required for optimal functioning of the Smart Surface
 Optimal functioning = a good differentiation average for each group of models

#### Hypotheses

- Differentiate parts ( $\neq$  recognize)
- All combinations of three out of four models
- The differentiation is done by calculating a set of simple criteria that can be distributed
- Free rotation

The SNC Calibrator Some definitions : criteria

#### Definition of criteria

• Example : the criterion «Y»  

$$P = \{(x, y)/S(x, y) = 1\}, \text{ with } S \text{ sensor matrix}$$

$$Y = \prod_{c_1 \in P} \prod_{c_2 \in P_{c_1 \neq c_2}} d_M, \text{ with } d_M = |c_1(x) - c_2(x)| + |c_1(y) - c_2(y)|$$

$$Y = (1x2x1x2x3x2)x(...)x...$$

Example SNC

Kahina Boutoustous, Eugen Dedu and Julien Bourgeois 12/22

The SNC Calibrator Some definitions : criteria

#### Definition of criteria

$$P = \{(x, y) / S(x, y) = 1\}, \text{ with } S \text{ sensor matrix}$$

$$Y = \prod_{c_1 \in P} \prod_{c_2 \in P_{c_1 \neq c_2}} d_M, \text{ with } d_M = |c_1(x) - c_2(x)| + |c_1(y) - c_2(y)|$$

$$Y = (1x2x1x2x3x2)x(...)x...$$

#### Example



12/22 Kahina Boutoustous, Eugen Dedu and Julien Bourgeois

The SNC Calibrator Some definitions : criteria

#### Definition of criteria

$$P = \{(x, y) / S(x, y) = 1\}, \text{ with } S \text{ sensor matrix}$$

$$Y = \prod_{c_1 \in P} \prod_{c_2 \in P_{c_1 \neq c_2}} d_M, \text{ with } d_M = |c_1(x) - c_2(x)| + |c_1(y) - c_2(y)|$$

$$Y = (1x2x1x2x3x2)x(...)x...$$

#### Example







12/22 Kahina Boutoustous, Eugen Dedu and Julien Bourgeois

The SNC Calibrator Some definitions : criteria

#### Definition of criteria

$$P = \{(x, y) / S(x, y) = 1\}, \text{ with } S \text{ sensor matrix}$$

$$Y = \prod_{c_1 \in P} \prod_{c_2 \in P_{c_1 \neq c_2}} d_M, \text{ with } d_M = |c_1(x) - c_2(x)| + |c_1(y) - c_2(y)|$$

$$Y = (1x2x1x2x3x2)x(...)x...$$

#### Example







12/22 Kahina Boutoustous, Eugen Dedu and Julien Bourgeois

The SNC Calibrator Some definitions : criteria

#### Definition of criteria

$$P = \{(x, y) / S(x, y) = 1\}$$
, with S sensor matrix

$$Y = \prod_{c_1 \in P} \prod_{c_2 \in P_{c_1 \neq c_2}} d_M, \text{ with } d_M = |c_1(x) - c_2(x)| + |c_1(y) - c_2(y)|$$

$$Y = (1x2x1x2x3x2)x(...)x...$$

#### Example







The SNC Calibrator Some definitions : criteria

#### Definition of criteria

$$\bullet~$$
 Example : the criterion «Y»

$$P = \{(x, y) / S(x, y) = 1\}, \text{ with } S \text{ sensor matrix}$$

$$Y = \prod_{c_1 \in P} \prod_{c_2 \in P_{c_1 \neq c_2}} d_M, \text{ with } d_M = |c_1(x) - c_2(x)| + |c_1(y) - c_2(y)|$$

$$Y = (1x2x1x2x3x2)x(...)x...$$

#### Example







The SNC Calibrator Some definitions : criteria

#### Definition of criteria

• Example : the criterion 
$${}^{\circ}$$
Y»

$$P = \{(x, y) / S(x, y) = 1\}$$
, with S sensor matrix

$$Y = \prod_{c_1 \in P} \prod_{c_2 \in P_{c_1 \neq c_2}} d_M, \text{ with } d_M = |c_1(x) - c_2(x)| + |c_1(y) - c_2(y)|$$

$$Y = (1x2x1x2x3x2)x(...)x...$$

#### Example

12/22



| 1 | 1 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| 1 | 1 | 1 |



The SNC Calibrator Some definitions : criteria

#### Definition of criteria

• Example : the criterion 
$${}^{\circ}$$
Y»

$$P = \{(x, y) / S(x, y) = 1\}$$
, with S sensor matrix

$$Y = \prod_{c_1 \in P} \prod_{c_2 \in P_{c_1 \neq c_2}} d_M, \text{ with } d_M = |c_1(x) - c_2(x)| + |c_1(y) - c_2(y)|$$

$$Y = (1x2x1x2x3x2)x(...)x...$$

#### Example



| 1 | 1 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| 1 | 1 | 1 |



The SNC Calibrator Some definitions : criteria

#### Definition of criteria

$$P = \{(x, y) / S(x, y) = 1\}$$
, with S sensor matrix

$$Y = \prod_{c_1 \in P} \prod_{c_2 \in P_{c_1 \neq c_2}} d_M, \text{ with } d_M = |c_1(x) - c_2(x)| + |c_1(y) - c_2(y)|$$

$$Y = (1x2x1x2x3x2)x(...)x...$$

#### Example



| 1 | 1 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| 1 | 1 | 1 |



The SNC Calibrator Some definitions : criteria

#### Definition of criteria

$$\bullet$$
 Example : the criterion «Y»

$$P = \{(x, y) / S(x, y) = 1\}, \text{ with } S \text{ sensor matrix}$$

$$Y = \prod_{c_1 \in P} \prod_{c_2 \in P_{c_1 \neq c_2}} d_M, \text{ with } d_M = |c_1(x) - c_2(x)| + |c_1(y) - c_2(y)|$$

$$Y = (1x2x1x2x3x2)x(...)x...$$

#### Example



| 1     | 1 | 0 |
|-------|---|---|
| 1     | 1 | 1 |
| 1     | 1 | 1 |
| 1/ 70 |   |   |

The SNC Calibrator How many sensors are needed to differentiate three parts?











#### The SNC Calibrator How many sensors are needed to differentiate three parts?





#### The SNC Calibrator How many sensors are needed to differentiate three parts?

#### Some definitions : differentiation ratio for $G1 = \{P1, P2, P3\}$







#### The SNC Calibrator How many sensors are needed to differentiate three parts?

#### Global structure of our calibrator



## Results

#### Example of models



16/22 Kahina Boutoustous, Eugen Dedu and Julien Bourgeois

EA 4265

## Results

#### Group square, I, L



## Results

#### Group square, L, O



## Results

#### Computing the non differentiation ratio

- Let R be a set of rotation values  $R = \{1^{\circ}, 2^{\circ}, ..., 360^{\circ}\}$
- N is set of values of grid sensors size  $N = \{15, 20, ..., 60\}$
- $C_k$  function that calculates the values of criteria
- $f(P_j, n, r)$  function that calculates the binary representation of the model  $P_j$  according n step of rotation and r value of grid sensors

$$NDR(C_k, P_i, P_j, n) = \frac{|C_k(f(P_i, n, r))_{\forall r \in R} \cap C_k(f(P_j, n, r))_{\forall r \in R}|}{|C_k(f(P_i, n, r))_{\forall r \in R} \cup C_k(f(P_j, n, r))_{\forall r \in R}|}$$

## Results



Kahina Boutoustous, Eugen Dedu and Julien Bourgeois 20/22

## Conclusions and future works

#### Conclusions

- The SNC calibrator :
- A sensor grid of (35, 35) is an appropriate parameter for the Smart Surface

#### Future works

- Test our SNC calibrator with other models
- Develop distributed algorithms for various criteria
- Implement our distributed algorithms in the Smart Surface



## Thank you for your attention



## Questions?



990