

Scaling up Routing in Nanonetworks with Asynchronous Node Sleeping

Ali Medlej, Kamal Beydoun, Eugen Dedu, Dominique Dhoutaut

Univ. Bourgogne Franche-Comté, FEMTO-ST Institute, CNRS, France

SoftCOM 2020 Hvar, Croatia, September 17-19, 2020

Wireless Nanonetwork Characteristics

- ❖ Nano-thing size → 1..1000 nm (< 1 µm)</p>
- Wireless nanonetworks built from tiny nodes
- Nanonodes have limited embedded computing, sensing and actuating devices

Constraints and Problematic in nanonetwork

- Limited hardware resources (CPU, memory, battery) due to fabrication constraints
- Nanonode buffer limitation
- Low network lifetime

The main challenge in nanonetworks is the routing protocol used by nodes

Node Sleeping

SLR Addressing and Routing Protocol

- SLR (Stateless Linear-path Routing) implements a coordinate-based routing, packets are forwarded if and only if they are on the path between the source and the destination of the packet
- ❖ SLR has 2 phases :
 - Initial phase (nodes coordinates)
 - Routing phase

Channel Modulation Technique

- Time Spread On-Off Keying is a modulation technique used to share the radio terahertz channel for nanodevices in a nano-network
- "1" bits are encoded with a power pulse of duration "Tp" and "0" bits are encoded as silence
- Symbol rate β determined by the ratio Ts/Tp
- Packets are transmitted as a sequence of pulses interleaved by a given duration

Ali Medlej

Asynchronous Node Sleeping

Proposed Mechanism (Enhancement)

Expected Results

- Reducing congestion in nanonetworks
- Dispatching traffic over all nodes → sharing the load
- Preserving nanonode resources (CPU, memory, energy)
- Increasing network lifetime

Sleeping Mechanism

- * Keep nodes awake all the time, lead to lose their resources rapidly
- The technique where the nodes periodically sleep and awake for a short period is called duty-cycling
- Our proposed mechanism differs from those used in macro-scale network on two main aspects:
 - Fine granularity
 - Asynchronism, decentralization

Sleeping Mechanism (2)

Ali Medlej

Evaluated Network (Scenario)

The evaluated network is of:

- -2D area with different nodes density (3000, 5000, 8000 and 15000)
- -Main flow direction (Bottom to the top)
- -Packets to be sends: 100 / 92 interfering flows
- -15 simulations of different RNG seeds have been used to avoid random effects
- -Packets interval time 0(null) / 5 times the duration of a packet

Simulated area size	6 mm * 6 mm
Number of nodes	3000 to 15000
Communication Radius	350 μm
β	1000
Тр	100 fs
Packet Size	1000 bit

Simulation Platform

We use BitSimulator to evaluate our proposed ideas

This simulator uses the TS-OOK modulation, allows the simulation of applications and routing protocols, and display graphically the simulation events

Scenario 1- No interfering flows / No interpacket waiting period

❖ 40% of unique packets reach the destination for 100% awake nodes (on horizontal axis)

Ali Medlej

Asynchronous Node Sleeping

Scenario 1- No interfering flows / With inter-packet waiting period

❖ Decreasing the awake time → slightly reduce the number of arrived packets

Sleeping Mechanism - Unexpected Behavior

A lower awake time → Data packets cannot be forwarded anymore Larger percentages of awake time → curves are mostly stable

Reasons:

- The load of forwarding packets dispatched among neighboring nodes → Increase network capacity
- Forwarded packets can be repeated along the whole path

Ali Medlej

Asynchronous Node Sleeping

Scenario 2- With Interfering Flows

- More flows (interfering) was added to study the network behavior
- ❖ Reception rate significantly improved → More packets arrive for 50% than for 100% of awaken nodes
- Improving the usable capacity of the channel

Ali Medlej

Asynchronous

Node Sleeping

Conclusion and Future Work

- Improving network behavior by limiting the amount of traffic an individual node can see
- Dispatching traffic over all nodes sharing the load
- Preserving nodes resources (energy, CPU, memory, ...)
- Improving network reliability by decreasing congestion

Future work

- -Integrating the sleep mechanism with backoff flooding
- -Automatic tuning of the awaken duration based on the neighborhood density

Node Sleeping

Questions?

