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2 rue Edouard Belin Université de Versailles St-Quentin-en-Yvelines

57070 Metz, France 45 Avenue des Etats-Unis

78035 Versailles Cedex, France

Stephane.Vialle@supelec.fr Eugen.Dedu@prism.uvsq.fr

Claude.Timsit@prism.uvsq.fr

Abstract

This paper introduces a new parallel program-
ming model for situated multi-agent systems
simulations and its parallel library implementa-
tion on shared memory MIMD parallel comput-
ers. The first goal is to allow users to easily im-
plement situated multi-agent systems, following
their natural paradigm: concurrent agent behav-
ior definition and environment update program-
ming. The second goal is to obtain efficient par-
allel executions on shared memory MIMD par-
allel computers, without dealing with parallel
programming difficulties (such as load balancing
and processes synchronization).

We present our parallel programming model
(ParCeL-5/ParSSAP), and the parallel algo-
rithms we have developed for the simulation
two agent percepts: direct vision and poten-
tial field detection. Finally, we give an exam-
ple of complete multi-agent system programma-
tion and its performance measurements on a 64-
processors SGI-Origin2000, exhibiting easy de-
velopment and good speed up.

1. Motivations

Situated multi-agent systems can be used to
model and study many real systems, composed
of entities acting simultaneously in an environ-
ment [2], such as traffic-jams, ant societies, or
robot teams [5].

But precise simulations of simultaneity of
agent actions, or simulations of large multi-agent
systems can be very time-consuming [1]. Multi-
Agent Systems generate a lot of computations
but also a lot of interactions between agents

and their environment which introduce an over-
head. Moreover, simultaneity of agent actions
lead to spatial conflicts that need frequently to
be solved fairly for all agents, hence generating
extra-computations. Then parallel execution is
needed to maintain acceptable execution times.

From the programmer point of view, multi-
agent system implementation is not obvious if
we have to implement simultaneity of agent ac-
tions, environment update and agent percep-
tions (such as visibility area detection and odor
propagation). From the performance race point
of view, intrinsic parallelism of multi-agent sys-
tems (MAS) is not always compatible with mod-
ern parallel computer one. Modern and gen-
eral purpose parallel computers are MIMD ones
and have frequently a limited number of pow-
erful processors, while situated MAS can have
many agents, each one making small computa-
tions. Moreover, MAS environment update is
not simple to parallelize. For these reasons, effi-
cient implementation of situated MAS on MIMD
computers is not straightforward. Adapted pro-
gramming models and efficient parallel develop-
ment tools are needed to limit development times
and obtain efficient runs.

Many parallel programming languages for
MIMD architectures exist [3], but none is par-
ticularly adapted to MAS paradigm. The differ-
ent development environment existing for MAS
are not really efficient on MIMD parallel com-
puters. The lack of tools has lead us to design
some programming models adapted to situated
multi-agent systems, and to implement efficient
parallel libraries dedicated to MIMD architec-
tures. Our last model and library is ParCeL-
5/ParSSAP, and it provides optimized paral-



lelization of agent percepts and environment up-
date.

2. Previous works

We have already developed a line of parallel pro-
gramming tools (languages and libraries) since
1989, the ParCeL line (Parallel Cellular Lan-
guages) dedicated to distributed computing sys-
tems as situated multi-agent systems. They are
based on cell network programming.

ParCeL-1 was first destined to Transputer-
based parallel architectures (old distributed
memory architectures) and some Artificial Intel-
ligence applications with intrinsic parallel com-
puting, such as neural networks and semantic
networks [7]. It was efficient on Transputer-
based architectures, but was too close to these
architectures: it was easy to understand, but
lacked expressiveness and dit not exploit features
of more recent parallel computers. ParCeL-3
has been designed for shared memory and dis-
tributed shared memory architectures, such as
SGI-Origin2000, and for a large wide of applica-
tions, including simulations of multi-agent sys-
tems [6]. It was a very generic development
tool, highly expressive, but very complex to use.
Even with the PIOMASS simulator [1] built on
ParCeL-3, MAS simulator implementations re-
mained too complex.

So, we designed ParCeL-5/ParSSAP, with a
programming model specifically intended for sit-
uated multi-agent systems, but easy to use and
with an efficient implementation on modern dis-
tributed shared memory machines. Other Par-
CeL projects are neural network parallel devel-
opment tools, out of scope of this article.

3. Parallel programming

model of ParCeL-5/
ParSSAP

3.1. Basic components of the
model

ParCeL-5/ParSSAP model is based on four basic
components : the environment, the resources,
the agents and the arbitrator.

Agents evolve inside an environment, spatially
discretized as two dimensional square mesh or
torus. Each box has a permanent type: empty,
obstacle or resource, and a dynamic state: occu-
pied or unoccupied (by an agent). Square boxes
have 4-connectivity or 8-connectivity, communi-
cating only by their edges or by their corners.

Local memory
(dynamically extensible)

Priority and speed

Behavior function

Percepts of the environment

Figure 1: General view of an agent/cell of ParCeL-
5/ParSSAP programming model.

Each box supports only one agent at a time, and
an obstacle entirely fills a box.

Resources are entities that entirely fill a box,
but still accept one agent inside. Resources store
objects (wealths), that agents can take, move
and drop, and can be perceived by agents from
near or far boxes (depending of percept configu-
rations). Each resource is visible by agents if it
is not hidden by obstacles, and can propagate a
decreasing potential. A user can define as many
resources and as many types of resources as nec-
essary. The type of a resource defines the type
of the objects stored and the type of potential
propagated.

Cells or Agents of ParCeL-5/ParSSAP are mo-
bil agents, and have local memories that can be
increased dynamically. Agents can be defined
before the beginning of the simulation, or can
be dynamically created after the simulation has
started, from the behaviors of already existing
agents. In both cases, agents can be destroyed
dynamically. Each agent has a speed, corre-
sponding to the frequency of its activation, and a
priority used by the arbitrator during the conflict
resolutions. Figure 1 summarizes agent features
of ParCeL-5/ParSSAP model.

The arbitrator consists in a set of rules mod-
elling the physical laws of the environment, au-
tomatically applied when agents attempt to act
and when environment is updated. Arbitrator
manages all conflicts caused by agent actions,
such as several agents attempt to enter the same
box at the same time. Then, a winner agent
is randomly and fairly chosen by the arbitrator
from agent with highest priority engaged in the
conflict.

3.2. Main features of agent behav-
iors

ParCeL-5/ParSSAP model defines some per-
cepts and actions of agents, that are useful to
define agent behaviors, such as dynamic agent
creation and destruction. But our model does
not limit agent behavior design.



The only constraint of our model on agent per-
cepts is their limitation to a local perception,
in the spirit of agent concept. On the other
hand, the number of agent percepts of our model
is not limited. Today we have parallelized and
implemented two classic percepts: direct vision
and potential field detection [2], limited by a vi-
sion radius and a potential radius. Direct vi-
sion allows agents to know instantaneously the
type and the state of a distant box, but it is
stopped by obstacles. Resources and agents do
not stop vision, but obstacles do. At the op-
posite, potential field detection allows agents to
always reach the resources, since potential prop-
agation is a wave propagation that bypasses the
obstacles. But agents detect only the potential
of their neighbor boxes (and look for increasing
potentials), which provide them the direction to
follow, and not the type and state of the boxes
they are going to cross.

Agents can make different actions on their en-
vironment during the activation of their behav-
iors. Some actions can be cumulated in the same
activation, others are exclusive. Sometimes they
lead to conflicts among agents, resolved by the
arbitrator. Currently, during its activation a
ParCeL-5/ParSSAP agent can move in a neigh-
bor box without obstacles or other agents, take
or drop objects inside resources if they are not
empty, respectively full, and create or destroy
other agents. Move, drop and take actions are ex-
clusive (either one movement, or one object ma-
nipulation per activation), but agent creations
or destructions can be always cumulated indefi-
nitely.

3.3. Timing model and cyclic run-
ning of MAS simulations

ParCeL-5/ParSSAP time model is a discret one,
with a cyclic running of the MAS simulations. A
simulation begins with a call to an initialisation
routine of the environment and the resources and
the agent percepts. Afterward, the simulation
loop begins, composed of five steps per cycle (see
figure 2).

Inside each simulation cycle, all agents are ac-
tivated in parallel at the beginning of the step 1,
but no action is executed, agents just compute
and declare their action intentions. Afterward
the arbitrator solves the conflicts, pointing out
some winners at step 2, and actions of winners
and non-conflicting agents are executed at step
3. Then, step 4 is dedicated to the execution of a
function defined by the user. It is usual to save
some simulation results on disks, or send data
on simulation evolution to a visualisation sys-
tem. This step can be sequential or parallel, de-

pending on the user design and implementation,
no constraint is added by ParCeL-5/ParSSAP
model. Finally, step 5 updates the environment
and percept data structures, as potential reprop-
agation when potential resources has evolved.

3.4. Step of simulation analysis

The analyse of a multi-agent system is a com-
plex problem, because it is composed of numer-
ous autonomous entities (the agents), evolving
in parallel and difficult to track. Various func-
tionalities are needed to access to global system
results (as total number of agents), to make a
statistical analysis (as percentage of agent bring-
ing object), and to save simulation evolution. So,
ParCeL-5/ParSSAP model includes the concept
of simulation analysis functionalities. It supplies
some basic analyse and save functions, and in-
cludes a special step in its simulation loop to
call these functions: the user end-cycle function
step (see figure 2).

3.5. Parallel implementation of
the model

ParCeL-5/ParSSAP has been implemented on
shared memory parallel computers using the
multithreading paradigm: Distributed Shared
Memory SGI-Origin2000, with up to 64 proces-
sors, using native Irix-Thread library, and classic
shared memory SUN-Enterprise450, with up to
4 processors, using Posix-Thread library [4].

ParCeL-5/ParSSAP parallel implementation
follows the ParCeL-5/ParSSAP model. Each
processor concurrently runs a loop simulation
(see figure 2), a synchronization barrier sepa-
rates each step, and an agent can be easily imple-
mented as a cell. But in order to be efficient on
MIMD parallel computers, each processor man-
ages several cells, and a cell is not implemented
as a process (too few computations to be a pro-
cess). It is implemented as a generic and mini-
mal data structure easy to manage, pointing on
specific data structures and a behavior function
(see figure 3).

Moreover, time consuming algorithms engaged
in agent percept simulations have been paral-
lelized and optimized: visibility field computa-
tion and wave potential field propagation. They
are described in the next sections.

4. Parallelization of visibil-
ity field computation

Vision percept allows an agent to get informa-
tions on a distant box if there is no obstacle be-



Parallel initialisation step (environment, ressources, percepts)

Step1 : Activation of agent behaviors,and declaration of action intentions

Step 2 : Resolution of agent conflicts by the arbitrator

Step 3 : Execution of actions of winner and non-conflicting agents 

Step 4 : Execution of parallel or sequential end-cycle function defined by the user

Step 5 : Update of environment and agent percepts
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Figure 2: Cyclic running of a ParCeL-5/ParSSAP simulation of MAS.

Pointer on cell memory

Priority and speed
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function

Internal registration
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- acces to shared data structures of the simulation
- access to percept simulation functions

Figure 3: Generic data structure used for any agent/cell in our parallel implementation of ParCeL-5/
ParSSAP model.

tween the center of its box and the center of the
distant box (see figure 4 for an example). Other
agents and resources do not stop its vision. As
obstacles are fixed, the visibility field from any
box can be definitely computed at the initializa-
tion of the simulation. This initialization takes a
long time but can be efficiently parallelized: visi-
bility fields from different boxes are independent
computations.

We use a ray-tracing algorithm to draw lines
between box centers and to test if they encounter
some obstacles. In order to avoid some round off
problems during ray-tracing on our discretized
two dimensional grid, we use a supercover line
tracing algorithm, that draw thick lines and does
not forget an obstacle corner, for example.

Our present parallelization is based on domain
partitioning: each processor computes visibility
fields of all boxes in a slice of the environment,
using supercover line tracing algorithm. This
parallel computation seems straightforward, but
two problems remain: load unbalance if obsta-

cles are not homogeneously spread on the envi-
ronment (as they influence computations), and
parallel memory allocations. Environment data
structures and visibility fields are dynamically
allocated, to adapt to simulation parameters in-
troduced by users (as environment size and vi-
sion radius). As visibility field of one box can be
used only by an agent situated on it, visibility
field data structures can be accessed only by the
processor in charge of this box. So, we decide to
make dynamic allocation of this data structure
on the processor managing this box, in order to
help the OS to allocate a memory area near of
this processor, not a big and far shared memory
area. But parallel visibility field allocation has
not scaled efficiently with standard memory al-
location functions of the SGI-Origin2000, even
when making only one allocation for all visibil-
ity fields of a processor. Dynamic memory allo-
cation remains a sensitive issue in parallel pro-
gramming.

Finally, we obtain the very good but not lin-
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Figure 5: Example of speed up of parallel visibility field allocation and initialization on a SGI-Origin2000.

ear speed up of the figure 5, for an environment
of 512 × 512 boxes with no obstacles and a 4-
connectivity and a vision radius of 8 box length,
on a SGI-Origin2000. Fortunately, usage of these
visibility-fields is automatically donne in parallel
from parallel run of agent behavior functions, no
more algorithmic efforts are needed.

5. Parallelization of wave

potential field propaga-
tion

Resources can emit some potentials that spread
and decrease, and bypass obstacles. Agents de-
tecting simple potential gradients on neighbor
boxes follow increasing potential directions and
finally reach resources quickly, avoiding obstacles
and moving on shortest paths (see figure 6). This

percept models a kind of odor propagation and
detection. When different potential fields meet,
a max() operator is applied: each box reached by
several potentials takes the maximum of these
values (see the potential field frontier on figure
6). But different resource types emit different
kinds of potential that do not mix but overlap.
So, resources of different types coexist without
any damage.

A resource potential usually matches a re-
source feature, such as the number of objects it
still contains, and evolves during the simulation.
So, a regular potential field update is needed,
and a parallelization is welcome as it is a time
consuming computation. At the opposite, po-
tential field exploitation from each agent behav-
ior is obviously parallel, and need no particular
algorithmic effort.

Two main parallelization strategies have been
studied: environment partitioning among pro-
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Figure 7: Potential fields parallel propagation based on environment partitioning.

cessors, and environment duplication on each
processor. The last strategy leads each proces-
sor to compute the entire propagation field of a
subset of resources, and finally all fields are com-
bined into one final field, each processor com-
puting a sub-part of this final field. This par-
allelization seems easy to implement, but the
total amount of needed memory increase with
the environment size and the number of proces-
sors: α × N × P . We have considered exces-
sive this amount of needed memory, and we have
preferred the environment partitioning strategy.
Each processor manages a slice of the environ-
ment grid, propagates potentials of the included
resources until the slice frontiers, and then takes
into account the potential of boxes on the other
side of the frontiers and propagate again their
potentials through its slice. We name this last
step a repropagation. Processors make repropa-
gations until no potential box is updated in the
entire environment (many re-propagation steps
can be necessary). Figure 7 illustrates this mech-

anism.

Several sequential algorithms have been
tested, looking for an efficient run of sequential
parts on each processor. Some recursive algo-
rithms proceed the minimal number of boxes,
but need recursive implementations with nu-
merous function calls, and iterative algorithms
make numerous loops processing all boxes of the
environment (from up and left to bottom and
right corner) but support efficient implementa-
tions taking advantage of cache memory (con-
tiguous array accesses) and processor pipeline
(possible loop unrolling). Breadth first recursive
method has appeared to be the most efficient
one when obstacles are numerous, and iterative
method has been the most efficient one when po-
tential sources are numerous. Moreover, most
efficient sequential method can be different for
initial propagation inside environment slice and
for frontier repropagations.

We have experimented several combinations of
sequential methods with environment partition-
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Figure 8: Speed up of parallel potential field propagation, based on environment partitioning, with mixed
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Parallel run on a SGI-Origin2000, and a 1024× 1024 environment with no obstacles and 1% of resources
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ing parallelization strategy, on a basic environ-
ment of 1024 × 1024 boxes, without obstacles,
and with 10000 resources (1% of the environ-
ment boxes) randomly spread (homogeneous en-
vironment). Compared to the same sequential
execution time, we obtained better speed up on
small number of processors with a mix of iter-
ative method for initial propagation inside en-
vironment slices and recursive method for fron-
tier repropagation. But we have obtained better
speed up on larger number of processors with al-
ways iterative method, see figure 8. Finally, we
have reached a speed up close to 18 on 32 pro-
cessors for potential propagation routine on ho-
mogeneous large environments (efficiency close
to 55%).

So, optimization of parallel potential propaga-
tion is not obvious and seems to need a heuristic
to dynamically choose the best algorithm com-
position, function of number of processors, en-
vironment size, environment constitution, wave
potential propagation radius, . . .

6. Global performance and

conclusion

In order to test the genericity of our program-
ming model, we have successfully implemented
a Conway’s game of life with still agents, and an
elementary simulator of people doing shopping in
a city center. However, we present the perfor-
mance of a larger simulator of carrier robots im-

plemented in ParCeL-5/ParSSAP, used to study
global population behavior emerging from indi-
vidual ones, and typically needing big and inten-
sive simulations.

These simulations run 10000 to 100000 robots
(agents or cells) evolving in a 1024 × 1024 grid
world (environnement), containing mines and
factories (resources). Robots have to catch some
ore (objects), to carry it to factories and then
to drop it, and they repeat this activity until all
the ore has been carried. Some randomly put ob-
stacles disturb robot moves, and potential fields
emitted by resources help robots to reach mines
and factories. Potential emitted by a mine de-
creases when its ore stock decreases, and factory
potentials remain constant, as it is decided they
have no storage limit. So, regular potential field
update is needed to take into account the mine
stock decrease. Statistic information about the
system evolution is regularly saved on disk, to
allow a postmortem analyse of the efficiency of
the robot behaviors.

ParCeL-5/ParSSAP programming model and
its current implementation allows the user to
easily model the robots and their world, by just
implementing a few agent behaviors and speci-
fying a few environment features. As such, user
can run parallel simulations without parallel al-
gorithmic nor parallel implementation nor simul-
taneity simulation efforts. The first goal of the
model, to be adapted to the simulations of sit-
uated multi-agent systems, is therefore reached
on this application.
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Figure 9: Execution time and Speed up of the carrier robots simulator, implemented in ParCeL-5/ParSSAP,
and run on a SGI-Origin2000.

We have run our application on a SGI-
Origin2000, with two different potential propa-
gation methods, and we have obtained the ex-
ecution time and speed up curves of the figure
9. Execution times are Wall-Clock times of the
entire application runs (including disk IO). We
have reached a speed up of 15 on 32 processors of
a SGI-Origin2000 with an entirely iterative prop-
agation method. On smaller parallel computers,
such as a 4-processors SUN-Enterprise450 or on
just 4 processors of the SGI-Origin2000, we have
obtained the best speed up with a mixed itera-
tive and recursive method, and we have reached
speed ups of 2.7 (SGI-Origin2000) and 3.5 (SUN-
Enterprise450).

So, these first results on an application with a
homogeneous environment are satisfying, there-
fore the second goal of efficient parallel run is
partially reached on this example.

But two problems remain. First, most effi-
cient potential propagation algorithm depends
on the number of processors used, and on the
environment configuration (number of obstacles,
number of resources, . . . ). We need to find and
implement a heuristic that dynamically and au-
tomatically makes this choice. Second, perfor-
mance has decreased when we have modelled
more complex worlds, with some resources con-
centrations that lead to agent concentrations
and to load unbalance among processors. In
the future we plan to optimize load balanc-
ing and to design a heuristic to point out the
most efficient potential propagation method, be-
fore adding new functionalities to our simulation
model of situated multi-agent systems.
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