Comparison of OpenMP and
Classical Multi-Threading Parallelization
for Regular and Irregular Algorithms

Eugen Dedu, Stéphane Vialle, Claude Timsit

Supélec, France

May 18, 2000

Context

SIMD - Vectorial

|
|
! time
y

multi-computer multi—processor
distributed shared memory

N\

message
passing

Y

process threads

directives

directives
OpenMP

OpenMP code

[1works at implementation level, not algorithmic level!

[J simplicity to learn and use: parallelization of a loop

1 // Classic threads version

2 // int nb_threads , my_tid, size , first , last;

3 size = last.index / nb_threads; // number of indexes assigned to every thread
4 first = my_tid « size;

5 last = (my_tid + 1 ==nb_threads) ? first + size : last.index;

6 for (i=first ; i<last ; i++)

7 array[i |=..;

1 // OpenMP version

2 // automatic loop decomposition
3 #pragma omp parallel for

4 for (i=0; i<last.index ; i++)
5 array[i]=..;

Writing parallel code in OpenMP

[Jincremental parallelization

sequential source code

Y

sequential debugging

>v

parallelization (directive—based)

s

parallel debugging

Main characteristics of OpenMP

[
[
[
[
[
[

]

easy to learn and to use (higher level than threads)
incremental parallelization

automatical computing of the number of threads
identical sequential and parallel code sources
portable

efficient

private variables

reduction (tree-based)

critical regions

Features of threads
[lower level than OpenMP

Pthreads OpenMP @
3 types of mutexes |1 type
semaphores -
expressiveness:
high medium Barner
[work with groups
of threads : easy possible sometimes

[barriers, mutual exclusions bound to groups of threads

" |OpenMP more appropriate for data parallelism
than code parallelism

Kohonen map

input data vector neuron map

X.

in
Win,out

dout — Z(wm out — xm)Q

mn

Win,out = Win,out + n(xm - win,out)

Kohonen implementation performance
(texec)

50 | |
] C-threads ———
45 Fortran-OpenMP ----- DI

40 -
35|
2
25 |
20 |
15 |
10 |

execution time (sec)

o B
VRV

1 2 4 6 8 10 12 14 16
number of processors

Kohonen implementation performance
(speed up)

3.5 T T LI >k T T
C-threads ——

“Fortran-OpenMP

X\

"X

speed up

1 2 4 6 8 10 12 14 16
number of processors

Kohonen implementation performance
(efficiency)

1 . |
C-threads ——
R Fortran-OpenMP S
08t
> 06|
[y
Q
Q .
T 04} .
0.2
O 1 1 \)) | I
1 2 4 6 8 10 12 14 16

number of processors

Situated multi-agent system

Agent : environment, perceptions, actions, goal.

- N
4 \

Situated multi-agent system

Difficult to parallelize, because of:
[] migration of agents Uload balancing, data localization
[] dynamic environment
[propagation of fields [synchronization, load balancing

[] different behaviours of the agents [lload balancing

Hinfluences on load balancing, cache performance ...

Wave-propagation algorithm

Example of
g increasing

f | potential way,
avoiding
obstacles

B source

g g Obstacle

OpenMP problems

[J find manually the index in REDUCTION clause

[l static domain partitioning

[equal number of threads

[J research of the optimal number of threads

SMAS implementation performance
(texec)
250 . . .
C-threads ———
200
% 150 r
£
"% 100
50
0 | | | | | | | | |
12 4 6 8 10 12 14 16 18 20
number of processors

SMAS implementation performance
(speed up)

3 T T T

C-threads —+—

25 +
2 L

15 ¢

speed up

1

0.5 r

12 4 6 8 10 12 14 16 18 20
number of processors

SMAS implementation performance
(efficiency)

1

C':—threa'ds Y

efficiency

12 4 6 8 10 12 14 16 18 20
number of processors

Comparison OpenMP/threads,
regular/irregular application

Regular algorithm: Irregular algorithm:
Kohonen map SMAS
Implementation C-threads Fortran- C-threads ~ C-OpenMP
OpenMP

Maximum speed-up 3 3.5 2.7 -
Optimal number of threads 5 7-8 16-18 -
Parallelization complexity medium easy high =
Development time 2 weeks 1 week 5 weeks > 5 weeks
Number of code source lines 450 400 950 850

Conclusions

[aregular and an irregular application

[l implemented in OpenMP and threads

[1 execution times comparable for regular applications
[l development times better in OpenMP for regular applications
[] irregular application and higher level of OpenMP:

[1 difficulty in programming

[] even utilization of non-OpenMP fonctions

Our advise

Type of application | Appropriate method | Reason

regular OpenMP rapid development
and execution

irregular threads better control

(expressiveness)

Bibliography

[1 Leonardo Dagum and Ramesh Menon. OpenMP: An Industry-
Standard API for Shared-Memory Programming. IEEE Computa-
tional Science & Engineering, January—March, 1998.

[] Jetf Fier (documentation SGI). Performance Tuning Optimiza-
tion for Origin2000 and Onyx. http://techpubs.sgi.com/
library/manuals/3000/007-3511-001/html/O2000Tuning.
0.html

[] Specifications, information. .. : http://www.openmp.org

http://techpubs.sgi.com/library/manuals/3000/007-3511-001/html/O2000Tuning.0.html
http://techpubs.sgi.com/library/manuals/3000/007-3511-001/html/O2000Tuning.0.html
http://techpubs.sgi.com/library/manuals/3000/007-3511-001/html/O2000Tuning.0.html
http://www.openmp.org

