
1/20

�

�

�

�

�

�

	

Comparison of OpenMP and
Classical Multi-Threading Parallelization
for Regular and Irregular Algorithms

Eugen Dedu, Stéphane Vialle, Claude Timsit
Supélec, France

May 18, 2000

2/20

�

�

�

�

�

�

	

Context

multi−processor

message
passing

process directives
OpenMP

threads

distributed
multi−computer

shared memory

SIMD − Vectorial

time
directives

3/20

�

�

�

�

�

�

	

OpenMP code
☞works at implementation level, not algorithmic level!

☞simplicity to learn and use: parallelization of a loop

1 // Classic threads version
2 // int nb threads , my tid , size , first , last ;
3 size = last index / nb threads; // number of indexes assigned to every thread
4 first = my tid ∗ size ;
5 last = (my tid + 1 == nb threads) ? first + size : last index ;
6 for (i= first ; i<last ; i++)
7 array[i] = ...;

1 // OpenMP version
2 // automatic loop decomposition
3 #pragma omp parallel for
4 for (i =0 ; i<last index ; i++)
5 array[i] = ...;

4/20

�

�

�

�

�

�

	

Writing parallel code in OpenMP
☞incremental parallelization

sequential source code

sequential debugging

parallel debugging

parallelization (directive−based)

end

5/20

�

�

�

�

�

�

	

Main characteristics of OpenMP

☞ easy to learn and to use (higher level than threads)

☞ incremental parallelization

☞ automatical computing of the number of threads

☞ identical sequential and parallel code sources

☞ portable

☞ efficient

☞ private variables

☞ reduction (tree-based)

☞ critical regions

6/20

�

�

�

�

�

�

	

Features of threads
☞lower level than OpenMP

Pthreads OpenMP
3 types of mutexes 1 type
semaphores –
expressiveness:

high medium
✗work with groups
of threads : easy possible sometimes

Thread 1 Thread 2 Thread 3

Barrier

✗barriers, mutual exclusions bound to groups of threads

✓OpenMP more appropriate for data parallelism
than code parallelism

7/20

�

�

�

�

�

�

	

Kohonen map

win,out

input data vector neuron map
xin

dout =
∑
in

(win,out − xin)2

win,out = win,out + η(xin − win,out)

8/20

�

�

�

�

�

�

	

Kohonen implementation performance
(texec)

0

5

10

15

20

25

30

35

40

45

50

1 2 4 6 8 10 12 14 16

ex
ec

ut
io

n
tim

e
(s

ec
)

number of processors

C-threads
Fortran-OpenMP

9/20

�

�

�

�

�

�

	

Kohonen implementation performance
(speed up)

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 6 8 10 12 14 16

sp
ee

d
up

�

number of processors

C-threads
Fortran-OpenMP

10/20

�

�

�

�

�

�

	

Kohonen implementation performance
(efficiency)

0

0.2

0.4

0.6

0.8

1

1 2 4 6 8 10 12 14 16

ef
fic

ie
nc

y

number of processors

C-threads
Fortran-OpenMP

11/20

�

�

�

�

�

�

	

Situated multi-agent system
Agent : environment, perceptions, actions, goal.

F

M

M
M

F

Agent

Mine

Factory

Obstacle

12/20

�

�

�

�

�

�

	

Situated multi-agent system

Difficult to parallelize, because of:

☞ migration of agents ➧ load balancing, data localization

☞ dynamic environment

☛ propagation of fields ➧ synchronization, load balancing

☞ different behaviours of the agents ➧ load balancing

➧ influences on load balancing, cache performance . . .

13/20

�

�

�

�

�

�

	

Wave-propagation algorithm

Obstacle

potential way,

Source

increasing

avoiding
obstacles

Example of

14/20

�

�

�

�

�

�

	

OpenMP problems

☞ find manually the index in REDUCTION clause

☞ static domain partitioning

☞ equal number of threads

☞ research of the optimal number of threads

15/20

�

�

�

�

�

�

	

SMAS implementation performance
(texec)

0

50

100

150

200

250

1 2 4 6 8 10 12 14 16 18 20

ex
ec

ut
io

n
tim

e
(s

ec
)

number of processors

C-threads

16/20

�

�

�

�

�

�

	

SMAS implementation performance
(speed up)

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8 10 12 14 16 18 20

sp
ee

d
up

�

number of processors

C-threads

17/20

�

�

�

�

�

�

	

SMAS implementation performance
(efficiency)

0

0.2

0.4

0.6

0.8

1

1 2 4 6 8 10 12 14 16 18 20

ef
fic

ie
nc

y

number of processors

C-threads

18/20

�

�

�

�

�

�

	

Comparison OpenMP/threads,
regular/irregular application

Regular algorithm: Irregular algorithm:

Kohonen map SMAS

Implementation C-threads Fortran-

OpenMP

C-threads C-OpenMP

Maximum speed-up 3 3.5 2.7 –

Optimal number of threads 5 7–8 16–18 –

Parallelization complexity medium easy high –

Development time 2 weeks 1 week 5 weeks > 5 weeks

Number of code source lines 450 400 950 850

19/20

�

�

�

�

�

�

	

Conclusions

☞ a regular and an irregular application

☞ implemented in OpenMP and threads

☞ execution times comparable for regular applications

☞ development times better in OpenMP for regular applications

☞ irregular application and higher level of OpenMP:

☛ difficulty in programming
☛ even utilization of non-OpenMP fonctions

20/20

�

�

�

�

�

�

	

Our advise

Type of application Appropriate method Reason

regular OpenMP rapid development

and execution

irregular threads better control

(expressiveness)

21/20

�

�

�

�

�

�

	

Bibliography

☞ Leonardo Dagum and Ramesh Menon. OpenMP: An Industry-
Standard API for Shared-Memory Programming. IEEE Computa-
tional Science & Engineering, January–March, 1998.

☞ Jeff Fier (documentation SGI). Performance Tuning Optimiza-
tion for Origin2000 and Onyx. http://techpubs.sgi.com/
library/manuals/3000/007-3511-001/html/O2000Tuning.
0.html

☞ Specifications, information. . . : http://www.openmp.org

http://techpubs.sgi.com/library/manuals/3000/007-3511-001/html/O2000Tuning.0.html
http://techpubs.sgi.com/library/manuals/3000/007-3511-001/html/O2000Tuning.0.html
http://techpubs.sgi.com/library/manuals/3000/007-3511-001/html/O2000Tuning.0.html
http://www.openmp.org

