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passing
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distributed
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OpenMP code
☞works at implementation level, not algorithmic level!

☞simplicity to learn and use: parallelization of a loop

1 // Classic threads version
2 // int nb threads , my tid , size , first , last ;
3 size = last index / nb threads; // number of indexes assigned to every thread
4 first = my tid ∗ size ;
5 last = ( my tid + 1 == nb threads) ? first + size : last index ;
6 for ( i= first ; i<last ; i++)
7 array[i ] = ...;

1 // OpenMP version
2 // automatic loop decomposition
3 #pragma omp parallel for
4 for ( i =0 ; i<last index ; i++)
5 array[i ] = ...;
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Writing parallel code in OpenMP
☞incremental parallelization

sequential source code

sequential debugging

parallel debugging

parallelization (directive−based)

end
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Main characteristics of OpenMP

☞ easy to learn and to use (higher level than threads)

☞ incremental parallelization

☞ automatical computing of the number of threads

☞ identical sequential and parallel code sources

☞ portable

☞ efficient

☞ private variables

☞ reduction (tree-based)

☞ critical regions
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Features of threads
☞lower level than OpenMP

Pthreads OpenMP
3 types of mutexes 1 type
semaphores –
expressiveness:

high medium
✗work with groups
of threads : easy possible sometimes

Thread 1 Thread 2 Thread 3

Barrier

✗barriers, mutual exclusions bound to groups of threads

✓OpenMP more appropriate for data parallelism
than code parallelism
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Kohonen map

win,out

input data vector neuron map
xin

dout =
∑
in

(win,out − xin)2

win,out = win,out + η(xin − win,out)
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Kohonen implementation performance
(texec)
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Kohonen implementation performance
(speed up)
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Kohonen implementation performance
(efficiency)
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Situated multi-agent system
Agent : environment, perceptions, actions, goal.
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Situated multi-agent system

Difficult to parallelize, because of:

☞ migration of agents ➧ load balancing, data localization

☞ dynamic environment

☛ propagation of fields ➧ synchronization, load balancing

☞ different behaviours of the agents ➧ load balancing

➧ influences on load balancing, cache performance . . .
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Wave-propagation algorithm

Obstacle

potential way,

Source

increasing

avoiding
obstacles

Example of
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OpenMP problems

☞ find manually the index in REDUCTION clause

☞ static domain partitioning

☞ equal number of threads

☞ research of the optimal number of threads
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SMAS implementation performance
(texec)
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SMAS implementation performance
(speed up)
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SMAS implementation performance
(efficiency)
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Comparison OpenMP/threads,
regular/irregular application

Regular algorithm: Irregular algorithm:

Kohonen map SMAS

Implementation C-threads Fortran-

OpenMP

C-threads C-OpenMP

Maximum speed-up 3 3.5 2.7 –

Optimal number of threads 5 7–8 16–18 –

Parallelization complexity medium easy high –

Development time 2 weeks 1 week 5 weeks > 5 weeks

Number of code source lines 450 400 950 850
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Conclusions

☞ a regular and an irregular application

☞ implemented in OpenMP and threads

☞ execution times comparable for regular applications

☞ development times better in OpenMP for regular applications

☞ irregular application and higher level of OpenMP:

☛ difficulty in programming
☛ even utilization of non-OpenMP fonctions
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Our advise

Type of application Appropriate method Reason

regular OpenMP rapid development

and execution

irregular threads better control

(expressiveness)
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