

Bibliothèque parallèle pour l'implantation de systèmes multi-agent à composantes connexionistes

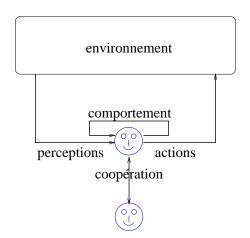
Eugen Dedu

Supélec, campus de Metz, France

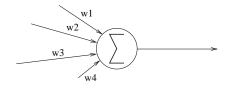
RenPar 2000, Besançon, France, 22 juin 2000

Plan

- Introduction
- Spécifications
- Parallélisme
- Performances
- Conclusions et perspectives



Introduction


Supélec

3/14

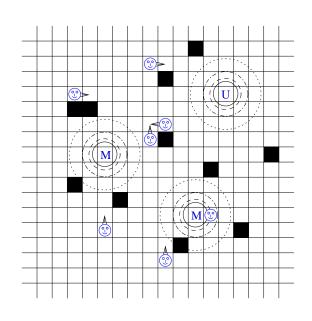
Système multi-agent

Neurone artificiel

Motivations

- extensibilité des algorithmes
- comportements efficaces
- émergence

- ✓simplicité à l'utilisation
- ✓bonnes performances à l'exécution
- ✓richesse en expression



Spécifications

- arbitre
- environnement,
 ressources
- agents
- initialisation
- sauvegardes
- ☞ fin

5/14

2 Agent

M Mine

U Usine

Obstacle

Type de parallélisme

✓parallélisme quasi-transparent

Choix:

- machines à mémoire partagée
- threads explicites

Faire attention à:

- équilibrage de charge (dynamisme de l'application)
- grain fin
- conflits de cache

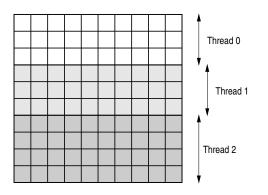
Simulation

Discrétisée en espace et en temps

Partitionnement

À partitionner:

- agents
- environnement (ressources etc.)

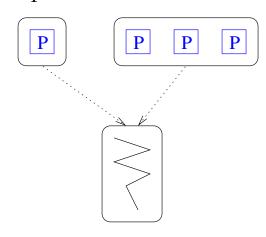

Types de partitionnement:

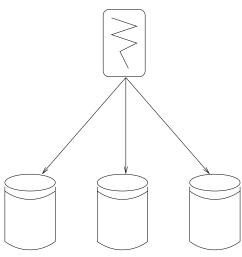
- données
- mailles

7

- agents qui changent de thread

*partitionnement dynamique

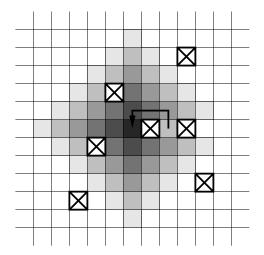


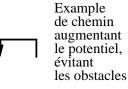


Parallélisme

Nombres aléatoires en parallèle

Entrées/sorties parallèles (étude sur Origin2000)



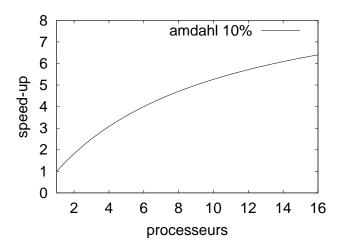

Propagation par vagues

3 solutions séquentielles :

- rafraîchissement normal
- distance jusqu'aux ressources
- groupe de chaque ressource

- échanges aux frontières
- dynamisme équilibrage de charge

5	5	6	7	8	7	
6	5	5	6	7	6	
7	6	5	5	6	5	
6	5	4	4	5	4	
5	4	3	4	4	3	
4	3	4	5	4	3	
3	2	3	4	3	2	

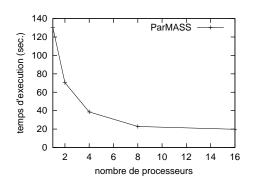


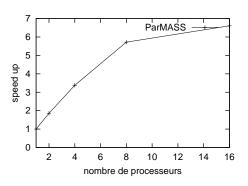
Goulots d'étranglement

Amdahl:

Parties séquentielles:

- sauvegardes (parallélisme non implanté encore)

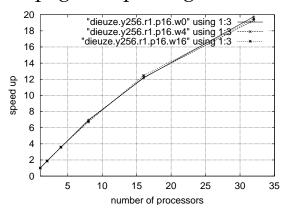




Performances

Xencore au stade d'implantation et optimisation

- environnement 800x800, 800 obstacles, 800 ressources, 800 agents
- Origin2000 à 64 processeurs



Perspectives

- performances du gradient à vagues
- implantation et performances de la vision
- ajouter les réseaux de neurones artificiels

Propagation par vagues

Vision

Conclusions

- bibliothèque pour l'implantation de systèmes multi-agent à composantes connexionistes
- facile à utiliser
- parallélisme quasi-transparent
- bonnes performances à l'exécution

