
A Study on the Benefit of TCP Packet Prioritisation
Eugen Dedu

Laboratoire d’Informatique
de l’Université de Franche-Comté (LIFC)

Montbéliard, France
Email: Eugen.Dedu@pu-pm.univ-fcomte.fr

Emmanuel Lochin
Université de Toulouse
ISAE - LAAS/CNRS

Toulouse, France
Email: emmanuel.lochin@isae.fr

Abstract—This paper studies and analyses the benefits of
favouring the transfer of packets of a TCP flow over a best-
effort network. Specifically, we aim at studying whether we
could improve the pace of short data request, such as HTTP
request, by giving a high priority to TCP packets that are not
previously enqueued inside a core router. Following the idea that
long-lived TCP flows greatly increase the routing queue delay,
the motivation of this work is to minimise the impact in terms
of delay, introduced by long-lived TCP flows over short TCP
flows. Thus, this forwarding scheme avoids to delay packets that
do not belong to a flow already enqueued inside a router in
order to avoid delay penalty to short flow. We define metrics to
study the behaviour of such forwarding scheme and run several
experiments over a complex and realistic topology. The results
obtained present interesting and unexpected property of this
forwarding scheme where not only short TCP flows take benefit
of such routing mechanism.

I. INTRODUCTION

Favouring the TCP connection establishment packets or any
others packets belonging to a TCP flow inside a core network
is not a novel idea. James Kurose, in his famous text book
Computer Networking [1], suggests that it would be useful to
protect from losses TCP packets with a low time-to-live value
in order to prevent retransmission of packets that have already
done a long travel inside a core network. As another example
and in the context of QoS networks, Marco Mellia et Al. [2]
have proposed to protect from loss some key identified packets
of a TCP connection in order to increase the TCP throughput
of a flow over an AF (Assured Forwarding) DiffServ class. In
this study, the authors observe that TCP performance suffers
significantly in the presence of bursty, non-adaptive cross-
traffic or when it operates in the small window regime, i.e.,
when the congestion window is small. The main argument is
that bursty losses, or losses during the small window regime,
may cause retransmission timeouts (RTOs) which will result
in TCP entering the slowstart phase. As a possible solution,
the authors propose qualitative enhancements to protect against
loss: the first several packets of the flow in order to allow TCP
to safely exit the initial small window regime; several packets
after an RTO occurs to make sure that the retransmitted packet
is delivered with high probability and that TCP sender exits
the small window regime; several packets after receiving three
duplicate acknowledgement packets in order to protect the
retransmission. This allows to protect against losses, packets
that strongly impact on the average TCP throughput. In this
paper, we propose to study the prioritisation of certain TCP

packets in order to investigate whether we could minimise
the transfer delay of short TCP flows without impacting on
the long lived connections. Basically, we study how to exploit
router functionality to improve the performance of short TCP
flows in a best-effort network by giving a higher priority
to the first packets of a TCP flow inside a router queue if
no others packets belonging to the same flow are already
en-queued. One of the main goals of this proposal, called
FavourTail, is to investigate and understand the benefits of
using a prioritisation forwarding scheme inside a core network.
Intuitively, we expect to decrease the transfer delay of small
TCP connections but surprisingly, we show that this routing
behaviour does not only improve the performance of TCP
flows and allows to improve the overall performance in terms
of transfer delay when slight congestion occurs. We present
the potential benefit of using such solution and analyse the
benefit of our scheme over a realistic and complex network
topology. We show that the proposed scheme can improve the
transfer delay of TCP flows up to 25%.

This paper is organised as follows: the next section II
presents some related work; afterwards, section III presents the
problem and gives the motivation of this work. Both sections
IV and V evaluate through simulations our FavourTail pro-
posal. Finally, section VI concludes and gives the perspectives
of this study.

II. RELATED WORK

Many research papers have tackled router-based methods to
optimise flows transfer. This section presents the most related
to our proposal.

In [3], routers memorise the number of bytes of each flow
crossing them. Upon reception of a packet, the number of
bytes is updated and is added to the queue so that packets in
the queue be always sorted based on the number of bytes
traversed. The consequence is the flows are given higher
priority when they are at the beginning of connection. The
drawbacks are routers need flow states, heavy computations
are requested to sort the queue, and the number of packets in
the flow must be known.

In [4], the authors remove this final condition by computing
the number of the packet from the TCP sequence number. To
do this, they introduce the following hypothesis: the starting
sequence number must have the last N bits (N = 22 proposed
in the article) equal to zero. The drawbacks are TCP senders

must be modified, the sequence number is more vulnerable to
guessing attack and the deployment is difficult: short flows on
a standard TCP source will be penalised, since the sequence
number of the first packets are misinterpreted by the router as
being the Nth packets. Two queues are used and a threshold.
Upon reception of a packet, if the number of bytes of that
flow is inferior to a threshold, the packet is enqueued in the
priority queue and in the normal queue otherwise. The priority
queue is FIFO, while the normal one is sorted by the number
of crossing packets. The normal queue is only used when the
priority queue is empty.

Another idea is presented in [5]. Only edge routers need
flow soft states (soft meaning that they do not need it per-
manently). They count the packets of each flow and set the
DiffServ bits of each packet. Core routers use only DiffServ
information. Edge routers mark packets as IN if the current
number of packets is inferior to a certain threshold, and OUT
if they exceed this threshold.

III. PROBLEM FORMULATION AND MOTIVATION

The purpose of storing packets at a router queue is to
temporarily absorb burst of packets. The idea we want to
develop is to prevent short data flows to be enqueued due
to a burst induced by long-lived traffic.

To solve this problem, a possible solution is to involve only
the end points. Suppose a connection which only needs to send
10 packets. If we assume the sender is aware of this small
number of packets to transmit, we could propose to let him
choose to send them all in one burst. However, this violates
the slow start phase and the congestion control principle. As
a matter of fact, it results that a mechanism to favour short
flows must necessarily involve routers.

Idea presentation: When a packet arrives at a router, the
router first decides whether it is to be rejected or enqueued1.
If the packet is to be enqueued, the packet scheduling takes
place. In the FIFO scheduling policy, the packet is inserted at
the top of the queue.

Our packet scheduling proposal, called FavourTail, changes
the enqueuing packet process. Indeed, when a packet is
enqueued, a check is made in the whole queue to seek another
packet from the same flow. If no other packet is found, it
becomes a priority packet, otherwise it is added as usual at the
top of the queue. Priority packets are added at the beginning
of the queue, right after the last priority packet (if there are
any). The packet reordering inside a flow is thus avoided.

This scheme is quite similar to a priority queuing scheduling
mechanism [7].

The packet scheduling policy proposed in FavourTail can be
enabled inside any queue management such as DropTail and
RED [1]. In the simulations below, we use DropTail.

Variants: There are many variants of this idea which do
not involve flow states on routers. We plan to work on them in

1In the case of RED routers [6], packets can be marked instead of being
rejected; marked packets belong to enqueued packets in our article.

order to understand their effect and drive performances com-
parison measurements. The following details some possible
variants:

• Instead of a binary function (i.e. insert the packet in
the priority queue or in the normal one), we could use
another function f(n, m) giving the level in the queue
where the packet is inserted, where n is the number of
packets of the same flow in the queue, and m is the total
number of packets in the queue. Function f might be
linear, exponential, logarithmic and so on. For example,
in classical FIFO, f(n, m) = m, i.e. the packet is always
added on top of the queue (the difference with Fair
Queuing scheduling policy is f also depends on the
number of packets of other flows);

• Instead of having only two queues, we could choose
to set several ones with number of packets threshold.
For example: one which enqueues packets with no other
packets belonging to the same flow, another for packets
with only few packets (for instance, one or two packets),
one for a bit more packets (more than two and less than
five) and the last priority queue for all the other packets.
However, this solution has to be studied carefully as it
might introduce an important overhead;

• Act on dropped/marked packets. When a packet is going
to be dropped and if it is a priority packet, then choose
the last low priority packet.

Dimensioning: We want to evaluate if FavourTail might
have good results in realistic cases. As an example, suppose
a flow of 8Mb/s (equivalent to 1000 pkts/s with a 1000 bytes
packet size). Suppose also an RTT (Round Trip Time) of 50ms.
It results 50 pkts/RTT (1000 pkts/s * 50ms/RTT). If each
direction gets half of them, then there are 25 data packets in
flight. If there are 10 routers between source and destination,
then there are 2.5 pkts/router in average. We therefore consider
that there are a few routers where this flow is still prioritised.
However, it is more consistent to consider the overall gain
obtained by the flow rather than the number of times this flow
got a packet with a high priority.

Characteristics:

• FavourTail does not only favour the beginning of connec-
tion but also flows with few packets in flight, i.e. with
small congestion window;

• There is no relationship between the routers, i.e. a flow
with ten packets in flight, one in each router, is favoured,
while another flow with only two packets in flight, both
on the same router, is not favoured. This is especially
true in the TCP slow start phase: packets are generated
in burst, so the probability to have several packets of this
flow in a router is higher. A CBR-like (Constant Bit Rate)
behaviour, such as the one in TFRC [8], should be much
more prioritised, because their packets are distributed
across all the routers;

• There are still several cases where a flow with a very
small transmission time has the same transmission time
in both cases (DropTail and FavourTail): (1) it might

have only one intermediate router, so the chance to be in
concurrence with other flows are smaller, (2) this might
be explained because in FavourTail, they never get high
priority (it crosses routers which have only high priority
packets), (3) it might be because in DropTail the routers
are empty (so it is like they would be priority), (4) it
might be because on the next router of the next router
the prioritisation of the packet does not change anything;

• For priority flows, the more routers are in the path, the
greater is the gain in terms of transmission time;

• In terms of security, sources cannot cheat by sending
packets at a rate making them always priority, because
they cannot estimate how many priority packets are inside
routers (a priority packet may be put in the head if there
is no other priority packet, but it may be put as number
10 is there are already 9 priority packets in the queue);

• The deployment is in the interest of the person who
deploys. Indeed, when a router uses FavourTail, its own
users are advantaged: clients receive faster Web pages,
and servers reply faster to their Internet clients;

• Starvation may occur for long flows in a router which
receives only priority packets. We have not discovered
such cases in our simulations, but it may arise in some
special cases, such as when new very short flows are
created at a regular and small interval, so that a non-
priority packet is blocked by packets from continuously
new flows. A solution to avoid starvation is that the
normal queue be served from time to time even if the
priority queue is not empty; we will tackle this in a future
work;

• A solution which acts on two bursty packets exactly like
two spaced packets, i.e. which spaces the bursty packets,
would avoid TCP problem given below, in section IV-C.
We reserve this possible enhancement in a future study.

FavourTail has been implemented in ns2 [9] as an extension
of the DropTail queue. The next sections present the results.

IV. SIMULATION RESULTS ON A SIMPLE NETWORK

A. Network topology

We firstly evaluate FavourTail over the simple network
topology given figure 1. The links are configured as follows:
both access links have a capacity set to 2Mb/s while the
bottleneck link has a 1Mb/s capacity. All links have a transfer
delay set to 10ms. The queue size of routers is 50 (the value
by default in ns2). Two FTP/TCP traffics are generated: the
first one, C1, from src1 to dest, and the second one, C2 (in
the second simulation we use TFRC instead of TCP), from
src2 to dest. C1 starts at sec. 0 and ends at sec. 5. C2 starts at
sec. 1 and generates only 12 data packets. Obviously, at the
beginning of the connection, a SYN packet is generated, and
FavourTail will give it a high priority. The tests are made with
both policies: DropTail and FavourTail.

B. Results

TCP: The time elapsed (in seconds) between the last
packet sent and the first one for C2 is 0.53 for DropTail and

src2

dest

router

src1

Figure 1. Topology of the simple network.

0.43 for FavourTail. The total number of packets sent by C1
is 591 in both cases. No packet is lost.

This is a positive result for the user in terms of transfer dura-
tion. Indeed, C1 is not penalised at the end of the connection,
while C2 finishes about 20% sooner. The reason is that the
first two packets of C2 are prioritised by the router. ns2 reveals
that, when arrived at the router, the first packet overtakes 13
slots (packets), while the second one overtakes 14 slots. The
analysis can be further developed: As the link transfer time
of packets is identical, the difference in time between C1
and C2 should correspond to the different processing time of
the first two packets by the router; and this time difference
(0.53 − 0.43 = 100 ms) should correspond to the processing
time of the 13+14 = 27 slots (packets) overtaken by the first
two packets of C2.

TFRC: If C2 uses TFRC [8] instead of TCP, the time
elapsed between the last packet sent and the first one for C2
is 0.54 for DropTail and 0.17 for FavourTail. The total number
of packets sent by C1 is 591 in both cases.

This is again a very positive results for the user. C1 is not
penalised at the end of the connection, while C2 transfer is
about 3 times faster. In fact, 6 packets from C2 are prioritised,
gaining each one between 14 and 17 slots.

C. Discussion

While the results with this network topology are positive,
i.e. the small flow is indeed favoured, the question is why not
all its packets are prioritised.

In fact, TCP is a protocol which sends packets in burst. The
first burst contains one packet, so it is prioritised. The second
burst, sent when the acknowledgement arrives, contains two
packets. The first packet is prioritised on the router, but the
second one arrives before the first one leaves the router (the
link after the router, 10ms/1Mb, is slower than the link before
the router, 10ms/2Mb), hence it is not prioritised. As the queue
contains many packets from the long flow, this packet is still
in the queue when the packets of the next burst arrive. In fact,
because the queue has many packets, none of the following
packets are prioritised.

On the other hand, TFRC is a congestion control which
sends a smooth (CBR-like) non bursty traffic. More packets
than TCP are prioritised, but not all (6 out of 12/13). The
reason is that for the seventh packet the throughput of the
TFRC flow is a bit higher than the output router link, so this
packet arrives at the router before the sixth packet has left.
The next packets will experience the same problem.

Router

Figure 2. Backbone of the flower network.

V. SIMULATION RESULTS ON A COMPLEX NETWORK

A. Network topology

In order to evaluate FavourTail over a more realistic case,
a more complex topology is used in the next simulations.
According to a small study of the xDSL backbone of a
Internet provider2, most of these networks are built around
a central core where several loops are connected. These loops
are composed of a small number of routers. The aim of the
closed loop is to have a fault tolerance, i.e. when one link
becomes unavailable, packets take the other direction so the
connection is still assured for all the routers.

For the simulation, a flower with five loops is considered
as backbone, each loop has 8 routers, shown in figure 2. Each
router (except the 5 core routers) has 2 DSLAMs3 connected to
it, and each DSLAM has 3 hosts connected to it. Each link has
the following characteristics: 10Mb/s bandwidth, 10ms delay,
DropTail (or our FavourTail). The queue size of all the routers
is 50 (the value by default in ns2).

We emit 500 FTP over TCP/Newreno connections with
random and non identical hosts as source and destination. Each
connection starts at a random time between 0 and 20 seconds
and sends a random number between 10 and 600 packets.

B. Results

Several metrics are used to compare DropTail and Favour-
Tail, we divide them in global and short flows specific ones.

Global metrics: Global metrics refer to metrics about the
whole simulation. Table I presents some results.

FavourTail globally reduces the transmission time of all
flows. As shown in figure 3, the time reduction is globally
spread among the flows with higher transmission time. This
will be detailed later. As a matter of fact, if a scheduler treats

2http://support.free.fr/reseau/province.png, not available anymore as of Au-
gust 2008. http://www.renater.fr/spip.php?rubrique12 presents the network of
another Internet provider; it uses several loops connected to 2 cores.

3A DSLAM (Digital Subscriber Line Access Multiplexer) is a network
device which connects multiple DSL (Digital Subscriber Line) clients to a
high-speed Internet backbone.

Table I
GLOBAL METRICS.

DropTail FavourTail
Sum of transmission times (in seconds) 2618.68 2410.34

Number of lost packets 2470 1608
Number of lost data packets 913 626

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350 400 450 500

Tr
an

sm
is

si
on

 ti
m

e
(s

ec
.)

Flow id [0..499], ordered by their value, so non identical x-values

DropTail
FavourTail

Figure 3. Transmission time of all the flows; the two curves have different
values on abscissa.

first shorter tasks, then the total finish time is smaller. This
might explain why we obtain a shorter transmission time.

We also notice that the number of lost packets, and of lost
data packets, is 30% smaller with FavourTail.

Short flow specific metrics: Our idea favours packets
when they are alone inside the current router (i.e. no other
packets from the same flow exist). This leads to the idea that
flows which have to send only few packets should be favoured.
However, several results prove the contrary.

The transmission time of each flow for both variants is given
in figure 4. They are ordered by the transmission time of the
FavourTail variant, in figure 4(a), and the DropTail variant,
in figure 4(b). In figure 4(a), it seems that flows with short
transmission times are indeed favoured. However, this is not
true. This is clearly shown in figure 4(b), where for short
transmission times (on the left x-axis in this figure), DropTail
variant seems to have smaller times.

It results that using DropTail or FavourTail transmission
time is subjective. An objective comparison, i.e. order the
abscissa based on the “length” of flow, is therefore needed.
Several criteria may be chosen as length of flow: (1) number
of packets sent by the flow, (2) number of packets divided by
the number of intermediate routers (or links), (3) number of
packets divided by the number of concurrent flows inside path
routers, and so on. In our context, i.e. favouring packets with
few packets, the most appropriate criterion is the number of
packets divided by the number of intermediate routers (we use
here a simple ratio function for simplicity purpose). A smaller
value means more favoured. In fact, the more the packets, the
smaller the gain of FavourTail; the more the number of links,

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350 400 450 500

Tr
an

sm
is

si
on

 ti
m

e
(s

ec
.)

Flow id [0..499], ordered by FavourTail values

FavourTail
DropTail

(a) FavourTail

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350 400 450 500

Tr
an

sm
is

si
on

 ti
m

e
(s

ec
.)

Flow id [0..499], ordered by DropTail values

DropTail
FavourTail

(b) DropTail

Figure 4. Transmission time of all the flows, ordered by the transmission
time of FavourTail variant, and DropTail variant.

Table II
STATISTICS OF THE TRANSMISSION TIME OF THE 500 FLOWS, ORDERED

BY THE NUMBER OF PACKETS DIVIDED BY THE NUMBER OF FLOW LINKS.

DropTail FlavourTail
Average 5.24 4.82
Std. Dev. 3.38 3.06

Min 0.24 0.24
Max 16.52 17.2

the higher the gain of FavourTail.
Table II presents the statistics of the transmission time

ordered by the number of packets divided by the number of
links. We can observe a slight advantage for FavourTail. The
statistics ordered by the number of packets show similar results
(albeit the difference between both variants is a bit further
reduced).

Finally, another round of simulations have been done, where
several parameters of the simulation have been individually
changed, and each time the results are quite similar. The

-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140 160 180 200

D
iff

er
en

ce
 b

et
w

ee
n

D
ro

pT
ai

l a
nd

 o
ur

 p
ro

po
sa

l (
se

c.
)

Queuesize in packets

of lost packets
of lost TCP data packets

sum of transmission time

Figure 5. Comparison between DropTail and our proposal when varying the
queue size.

parameters changed are:
• all the traffic is TFRC instead of TCP;
• the data size of flows follows a Pareto distribution with

an average of 300 packets and a shape of 1.2;
• the first 50 flows send between 1 and 10 packets and all

the others send between 200 and 800 packets;
• each core router has attached only one DSLAM, and each

DSLAM has only one host attached.
We plan to further investigate these simulations, as given in
future work.

Experiments with variable queue buffer size: In this ex-
periment, we vary the queue size of each router buffer from 2
to 200 packets. This allows to emulate a congestion level inside
the whole core network. We use the flower network topology
previously presented with random size of data transfer (but
with the following difference which however gives similar
results: the first 50 flows send a number of packets ranging
from 1 to 10 packets and all others send between 200 and 800
packets). Then, we report the number of dropped packets and
the number of TCP data packets and the sum of transmission
time of all data transfer during the experiment. These metrics
are those already presented at the beginning of this section.

In order to verify the benefit introduced by our solution
at a macroscopic level, we show in figure 5 the difference
between the results obtained by DropTail and our proposal.
When this difference is positive, our proposal gets better
performance than DropTail. As expected, and in order to verify
our implementation, when the queue size is very small (i.e.
when the queue size is set to two packets), the difference is
nil meaning there is no advantage for both mechanisms. When
the queue size is very large (i.e. higher than hundred packets),
the performance realized by both mechanisms is quite similar.
The fixed TCP window size of all sources explains this later
result: the buffer occupancy of each router queue is stabilized
since the emitted traffic is not growing anymore due to this
fixed size. This result allows to stand that when buffers size

are large, meaning there is no congestion inside the network,
our proposal does not bring any advantage. However, when
the queue size is ranging from 10 to 70, that can symbolize
a congestion level considered as severe to slight, our proposal
allows to decrease the number of dropped packets and as
a consequence, the number of retransmitted packets which
directly results by a lower transmission time for the TCP flows.

At a microscopic level, the results obtained by all flows are
similar to those presented in figure 3. Despite the fact that the
overall performance gets better, we cannot see a lower transfer
time for short TCP flows as illustrated in figures 6 for various
queue sizes.

VI. CONCLUSION

In this paper, we have presented and evaluated a novel
forwarding scheme. We show that this scheme leads to in-
teresting properties allowing to decrease the overall transfer
delay of TCP flows in the context of best-effort networks.
The results obtained are quite unexpected, as intuitively we
would expect a stronger benefit of this mechanism to short
TCP flows and on the contrary, measurements show an overall
benefit for long flows without high impact over short ones with
our proposal compared to DropTail. Indeed, the main findings
are that FavourTail decreases the number of packets dropped
and as a primary consequence, the sum of transmission times
is thus reduced. However, the short flows are not noticeably
favoured compared to the other longer flows.

In a future work, we aim at investigating, through a larger
measurements campaign, this forwarding scheme and in par-
ticular with other transport protocols such as TFRC in order
to verify whether we would benefit similar properties.

ACKNOWLEDGEMENTS

Authors thank Pascal Anelli, François Spies for their re-
marks about packet prioritisation, and anonymous reviewer.

REFERENCES

[1] J. F. Kurose and K. W. Ross, Computer Networking, 4th ed. Addison-
Wesley, 2008.

[2] M. Mellia, I. Stoica, and H. Zhang, “Tcp-aware packet marking in
networks with diffserv support,” Comput. Netw., vol. 42, no. 1, pp. 81–
100, 2003.

[3] I. A. Rai, E. W. Biersack, and G. Urvoy-Keller, “Size-based scheduling to
improve the performance of short TCP flows,” IEEE Networking, vol. 19,
no. 1, pp. 12–17, Jan.-Feb. 2005.

[4] K. Avrachenkov, U. Ayesta, P. Brown, and E. Nyberg, “Differentiation
between short and long TCP flows: predictability of the response time,”
in INFOCOM, ser. 7, vol. 2. Hong Kong: IEEE, Mar. 2004, pp. 762–773.

[5] X. Chen and J. Heidemann, “Preferential treatment for short flows to
reduce web latency,” Computer Networks, vol. 41, no. 6, pp. 779–794,
Apr. 2003.

[6] S. Floyd and V. Jacobson, “Random early detection gateways for conges-
tion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4,
pp. 397–413, Aug. 1993.

[7] D. Zhang, H.; Ferrari, “Rate-controlled static-priority queueing,” in Pro-
ceedings of IEEE Infocom, Mar. 1993.

[8] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “TCP Friendly Rate
Control (TFRC): Protocol specification,” Sep. 2008, RFC 5348.

[9] “Network simulator — ns-2,” http://www.isi.edu/nsnam/ns/.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350 400 450 500

Tr
an

sm
is

si
on

 ti
m

e
(s

ec
.)

Flow ID [0..499], ordered by their value, so non identical x-values

DropTail
FavourTail

(a) queuesize=10

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350 400 450 500

Tr
an

sm
is

si
on

 ti
m

e
(s

ec
.)

Flow ID [0..499], ordered by their value, so non identical x-values

DropTail
FavourTail

(b) queuesize=30

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350 400 450 500

Tr
an

sm
is

si
on

 ti
m

e
(s

ec
.)

Flow ID [0..499], ordered by their value, so non identical x-values

DropTail
FavourTail

(c) queuesize=50

Figure 6. Transmission time of all flows as a function of the queue size.

