Dynamic ring-based forwarder selection to improve packet delivery in ultra-dense nanonetworks

F. Hoteit, D. Dhoutaut, W. Seah, E. Dedu Univ. Bourgogne Franche-Comté, FEMTO-ST Institute, CNRS France

ACM NanoCom 2022 Barcelona, Spain, October 5–7, 2022

Context

- **Thematic:** Electromagnetic nanonetworks (and ultra-dense ad hoc networks)
- Nanonetwork group in Montbéliard:
 - D. Dhoutaut
 - E. Dedu
 - PhD students:
 - F. Hoteit
 - A. Medlej
 - C. Al Mawla
 - T. Arrabal
 - M. A. Zainuddin
- Collaborations:
 - W. Seah (New Zealand)
 - K. Beydoun (Lebanon)
 - S. Fischer, F. Büther (Germany)
 - C. Liaskos, A. Tsioliaridou (Greece)

Montbéliard. Source: http://francegeo.free.fr/

Our office. Source: https://numericabfc.com/

MiGriBot world's fastest microrobot (our lab, 09/2022). Source: https://news.cnrs.fr/articles/meet-the-worlds-fastest-microrobot

Dynamic ring-based forwarder selection

Introduction

- Internet of Things (IoT): billions of connected devices
- Internet of Nano Things (IoNT): nanodevices
- Electromagnetic nanonetworks:
 - **THz** band (0.1–10 THz)
 - High data rates (up to a few terabits per second)
 - Resource-constrained nanodevices
 - Large network size (e.g., 10³ to 10⁹ nodes)
 - High node density (e.g., 10² or 10³ of neighbors)

Integrated nanodevice hardware architecture. Source: Nanoscale Communication: State-of-Art and Recent Advances.

Requirements	Software-defined	metamaterials	Wireless robotic materials	In-body communication	On-chip communication
	Gen. 1	Gen. 2			
Network size	10^3 to 10^6	10^{9}	10 to 10 ⁶	10^3 to 10^9	Up to 10 ³
Node density	100 to 10000 n	odes per cm ²	1 to 100 nodes per cm^2	$>10^3$ nodes per cm ³	$10-100 \text{ per mm}^2$
Applications' requirements of nanonetworks. Source: Survey on Terahertz Nanocommunication and Networking: A Top-Down Perspective.					
Eugen Dedu Dynamic ring-based forwarder selection				3 / 15	

Applications

- Military:
 - Nanosatellites
 - Nanoweapons
- In-body:
 - Health monitoring
 - Drug delivery
 - Genetic engineering

Steps towards satellite's miniaturization: Ncube-2, a Norwegian CubeSat (10 cm (3.9 in) cube). Source: Bjørn Pedersen.

Nanotubes for drug delivery. Source: Johns Hopkins University.

BitSimulator

- Nanonetwork simulator
- Designed by our team
- Highly scalable (hundreds of thousands of nodes simulated on a laptop)
- Routing and transport layers
- VisualTracer shows the events
- Full reproducibility (through RNG seeds)

http://eugen.dedu.free.fr/bitsimulator/

Problem

- Flooding/routing in ultra-dense ad hoc networks → Selection of large number of forwarders → Congestion and short network lifetime
- Previously we proposed the Ring

Previous contribution: Ring

- Implemented above existing routing protocols
- No need for:
 - Complete neighborhood or network knowledge
 - Routing tables
 - GPS or RSSI
- Each forwarder sends:
 - High-power control packet
 - Low-power control packet
 - only **once** before the very first data packet
- Forwarders are nodes
 - Selected by the routing protocol AND
 - In the **ring**:
 - Have received high-power control packet AND
 - Not low-power control packet

Eugen Dedu

(1)

transmitter

(2)

Current contribution: Dynamic ring

- Automatically selects the ring width based on the local node density
- Density Estimator for Dense Networks (DEDeN)
- Acknowledgment methods
 — High overhead

Scenario

- A source node generates a CBR flow of 50 packets
 - to all the nodes (flooding)
 - to the destination (unicast)
- Heterogeneous, shadowing
- Ring:
 - RangeBig = constant
 - RangeSmall = variable to fit (N = 60) ring neighbors (fwds + non fwds)
 - L = local density (DEDeN)

 $rangeSmall = \sqrt{rangeBig^2 - N * rangeBig^2/L}$

Parameter	Value
Size of simulated area	6 mm * 6 mm
Number of nodes	10 000
Communication range	1 000 µm
RangeBig	1 000 µm
RangeSmall	variable
Data packet size	1 003 bit
Control packet sizes	101, 102 bit

Scenario parameters

Pure flooding with dynamic ring

Pure flooding (left) vs pure flooding with dynamic ring (right),

Fwds (black), Receivers (blue)

- Fewer and better positioned forwarders
- Adaptation to local density
- Successful packet delivery

	Without ring	With dynamic ring
Pure flooding:		
forwarders per packet	10 000	1 949.2
receivers per packet	10 000	10 000

Values averaged for **80** simulations with 50 packets each

The dynamic ring assigning different rangeSmall values for nodes depending on their density

Probabilistic flooding with dynamic ring

Proba flooding (left) vs proba flooding with dynamic ring (right)

Probabilistic flooding:	proba = 6%	proba = 10%
forwarders per packet	601.59	273.512
receivers per packet	9999.9	9999.47

Backoff flooding with dynamic ring

Backoff flooding (left) vs backoff flooding with dynamic ring (right)

Backoff flooding:

forwarders per packet	79.934	52.242
receivers per packet	9999.97	9 999.55

SLR with dynamic ring

SLR (left) vs SLR with dynamic ring (right)

SLR			
forwarders per packet	901.688	129.116	
Destination reached	100%	100%	

Conclusion and future work

- The ring scales-up existing routing protocols, optimizing the forwarder selection and keeping a successful packet delivery
- Future work includes understanding the effect of local number of forwarders on the packet delivery