

A First Study on Video Transmission Over a Nanowireless Network

Eugen Dedu, Julien Bourgeois, Muhammad Agus Zainuddin

UFC/FEMTO-ST Institute, UMR CNRS 6174, France

{eugen.dedu,julien.bourgeois,muhammad.agus-zainuddin}@femto-st.fr

ACM NANOCOM 2014, Atlanta, USA

Outline

- Motivation
- Method/tools
 - NanoSim
 - QoE Monitor
- Simulation Result
- Conclusion & Future Works

Motivation

- Nanosensors promise to generate, process, and transmit multimedia content at nano scale
- Very high data rate (theoretically up to several Tbps) in a huge bandwidth (0.1-10 THz)
- In a previous work, we have studied the integration of wireless capabilities in micro-robots of the Claytronics project, showing the enhancement created by wireless communications

Motivation

- Nanocameras could be developed with
 - high sensitivity
 - very low power consumption [1]
- Nanosensors must harvest the energy by converting vibrational, fluidic, electromagnetic or acoustic energy into electrical energy
- A nanosensor could harvest more energy than it will use for packet transmission [2]
- The above properties, allow video application at nanoscale

Motivation

- Video application in nano sensor networks would be used in many fields:
- Application in bio-medical
 - Detect and destroy: Virus, Bacteria [3], Fungi
 - Drug delivery system for disease treatment
 - Observe inner organ with minimum or no surgery
- Application in advance multimedia
 - Real 3D holographic teleconference
 - Advance smart dust technology
- Application in military
 - Nuclear monitoring (in nanoscale)
 - Biological and chemical defenses

Method

- Performance of video application in nano sensor networks needs to be investigated through simulation
- Tools available (NS 3):
 - NanoSim: Throughput and Delay
 - QoE Monitor: Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), and Jitter

- NanoSim allows to evaluate Wireless NanoSensor Networks (WNSN) performance [4]
- NanoSim comprises three types of WNSN devices:
 - Nanonode: It is the smallest device and it can be seen as a sensor collecting information such as chemical reaction or multimedia content (sound, image and video). This device has limited capabilities in computational, storage and communication range

- Nanorouter: This device has larger capabilities than a nanonode, it can receive and forward information to the nanointerface or to other nanorouter
- Nanointerface: This device can be considered as the sink which process information from sensors. This device can also be used as a gateway to another network e.g: WiFi, LTE, etc

- The network architecture consists of four layers:
 - Application Layer (Message Processing Unit class)
 - Generates packets using Constant Bit Rate (CBR)
 - Receives packets from the lower layer
 - Network Layer
 - Receives/forwards packets between nanosensors and nanorouters to nanointerfaces

- Medium Access Control (MAC)
 - Transmits packets from network layer to physical layer without any control
 - Sends the packets when at least one node is in its transmission range
- Physical Layer.
 - Operates in Terahertz spectrum using TS-OOK modulation

Method - QoE

- •Quality of Experience (QoE) Monitor is an NS3 module
- Computes PSNR and SSIM metrics
- •At the transmitter side, the video source uses the RTP protocol to fragment the original video into packets.
- •Sender: header information like packet ID, payload size, and timestamps are added.
- •Receiver: extracts the header from each packet and creates the reconstructed video.

Method

- •Peak Signal to Noise Ratio (PSNR) measures distortion between the received video and the original
- •Structural Similarity (SSIM) quantifies loss of image structural information; it uses sliding windows shifted pixel by pixel on each single frame
- •Jitter is the variation of end-to-end delay between packets
- •Nano-sim patch, Qoe patch, and nanovideo streaming application available:
 - http://eugen.dedu.free.fr/publi/nanovideo/

Method

•We used two network topologies for the tests:

- The first has two nodes, and is used to check the simulator with the two modules (QoE monitor and Nano-Sim)
- The second has one source, one destination and 16 relays, and is used to discover how communication is done in a multi-hop nanonetwork

•The video file used as input is the classical "news" sequence in CIF resolution

•The PSNR has a relatively low value (20 to 35 dB) and is quite regular

•No packet is lost on the network; but the reordering done by NanoSim, makes QoE monitor drop packets at receiver

The PSNR for 2-nodes network.

The abrupt changes in PSNR plot, appearing at frames 45, 80 and 130, correspond to abrupt scene changes in video file
The PSNR for 18-nodes network, is similar to the one for 2-nodes and exhibits the same properties

•SSIM curve varies more at abrupt scene changes, but it is less visible, except for frame 130

•The SSIM curve for 2-nodes network is similar to 18-nodes network

The SIMM for 18-nodes network

Jitter varies generally between 30 ns and 70 ns. These values are 3 orders of magnitude lower than what is currently found on Internet, which are of order of tens of ms
As a consequence, the buffers at receiver side could potentially be much smaller than the ones on Internet

Conclusion & Future Works

•Current simulation showed the limitation of the tools and their models. Unordered packets provide non realistic simulation

•Research in this field needs better tools and models for such studies

•Such a tool should take into account channel contention, transmission delays, a more realistic packet loss pattern, allow to read and write video files even at high bitrates, and, last but not least, give reliable results

Conclusion & Future Works

- •Find methods for specific nanowireless channel coding for multimedia
- •Take advantage of low-weight coding for multimedia content
 - Increase the proportion of "O" in the media
 - Minimize the interferences between different senders/receivers
 - Enhance energy consumption of the whole system

References

[1]	J. M. Jornet and I. F. Akyildiz, "The Internet of Multimedia Nano-Things," Nano Communication Networks (Elsevier) Journal, vol. 3, no. 4, pp. 242-251, December 2012
[2]	P. Wang, J. M. Jornet, M. G. A. Malik, N. Akkari, and I. F. Akyildiz, "Energy and Spectrum-aware MAC Protocol for Perpetual Wireless Nanosensor Networks in the Terahertz Band," Ad Hoc Networks (Elsevier) Journal, vol. 11, no. 8, pp. 2541-2555, November 2013
[3]	I. F. Akyildiz and J. M. Jornet, "Electromagnetic Wireless Nanosensor Networks," Nano Communication Networks (Elsevier) Journal, vol. 1, no. 1, pp. 3-19, March 2010
[4]	G. Piro, L. A. Grieco, G. Boggia, and P. Camarda. Nano-sim: Simulating electromagnetic-based nanonetworks in the network simulator 3. In Proceedings of the 6th International ICST Conference on Simulation Tools and Techniques, SimuTools '13, pages 203–210, ICST, Brussels, Belgium, Belgium, 2013
[5]	D. Saladino, A. Paganelli, and M. Casoni. A tool for multimedia quality assessment in NS3: QoE Monitor. Simulation Modelling Practice and Theory, 32:30–41, Mar. 2013

