
Journal of Parallel and Distributed Computing 144 (2020) 98–108

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Short and long term optimization formicro-object conveyingwith
air-jetmodular distributed system
Hakim Mabed ∗, Eugen Dedu
University Bourgogne Franche-Comté FEMTO-ST Institute, CNRS, Montbéliard, France

a r t i c l e i n f o

Article history:
Received 27 May 2019
Received in revised form 17 March 2020
Accepted 28 May 2020
Available online 8 June 2020

Keywords:
Distributed conveying system
Shortest path problem
Multicriteria optimization
Incremental computing

a b s t r a c t

Smart surface is a new conveying technology composed of a 2D planar surface presenting a matrix
of distributed autonomous blocks. Every block contains a micro-electro-mechanical system (MEMS)
actuator that controls the transfer of a possible object located above the block to the neighboring
blocks, using air-jet forces. The spatial characteristics of the blocks impose some limits on the memory,
energy and computation capabilities of the MEMS blocks. On the other hand, the system can reach
several thousands of blocks making necessary to propose scalable algorithmic solutions.

This paper studies different distributed algorithms to convey an object from an initial to a target
position in the smart surface. The conveying policy emphasizes the long term use of the smart surface
and the objects conveying efficiency measured by the time of the transfer. The problem stands as an
original case of multi-objective Shortest Path problem (MOSP). Original because the quality of a given
path is not evaluated by the sum of the weights of its segments, and because the segment weights
change according to the used paths as provided by the algorithm itself. Therefore, the efficiency of a
given algorithm is assessed on the basis of its performance during a long period of time.

We describe here the best way to combine these two objectives and we propose a scalable
incremental distributed protocol for objects conveying. The path optimality is adjusted according
to the required calculation complexity. The performances of the different algorithmic and modeling
variations are analyzed in terms of memory, time, computation and exchanged messages complexity.
The obtained results prove the scalability of the algorithm, with linear computational, memory and
convergence time complexity, and confirm the improvement of smart surface usage compared to a
naive approach. The system lifespan increases of up to 130% on 40 × 40 smart surface, while the
transfer cost (time and energy) is reduced. We show also that the computation time of the path
with the incremental algorithm can be significantly reduced without significant degradation of the
conveying system performance. For example, in a 40 × 40 smart surface, the number of messages is
divided by 4 while the number of conveyed objects is only reduced by a ratio of 4%.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

A conveyor is a mechanical equipment that allows the trans-
portation of objects within the production chain. In this study,
we focus on the conveying of sub-millimeter components
[7,10]. Using conveyors for micro-object is essential since human
intervention is inconceivable. In [17], conveyance systems are
classified according to the used transfer forces into 19 different
technologies, such as chain conveyor, wheel conveyor, flat belt
conveyor, magnetic belt conveyor, bucket conveyor, vibrating
conveyor, pneumatic conveyor, etc. Contact-less systems such
as air-jet platform present a safer way to convey fragile objects
(electrical or chemical products for example).

∗ Corresponding author.
E-mail addresses: hmabed@femto-st.fr (H. Mabed), eugen.dedu@femto-st.fr

(E. Dedu).

Smart surface [2] platform, shown in Fig. 1, is a robotic system
composed of a grid of numerous autonomous elements (MEMS)
developed for the transportation of microscopic objects over
short distances. Every MEMS block involves microsensors, mi-
croactuators and a control unit. The blocks work in a distributed
manner (without central unit) in order to transfer the objects to
given target locations.1 On one hand, the distributed architecture
of the smart surface platform provides a more robust (fault
tolerance) framework than systems based on a single monolithic
block where any failure leads to the system shutdown. Indeed,
the smart surface presents a modular architecture that leads
to self-reconfiguration features, i.e. search for alternative paths
to convey an object by avoiding failed blocks. On the other

1 Smart Surface project started as a research project (ANR 06 ROBO 0009)
supported by French National Research Agency (ANR).

https://doi.org/10.1016/j.jpdc.2020.05.016
0743-7315/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2020.05.016
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.05.016&domain=pdf
mailto:hmabed@femto-st.fr
mailto:eugen.dedu@femto-st.fr
https://doi.org/10.1016/j.jpdc.2020.05.016

H. Mabed and E. Dedu / Journal of Parallel and Distributed Computing 144 (2020) 98–108 99

Fig. 1. The smart surface architecture. The object is conveyed from its initial
position S to its final position D using air pressure forces.

hand, contact-based technologies are not appropriate for fragile
and tiny micro-objects (medicines, micro-electronics parts, etc.),
which can be easily damaged, contaminated or even scratched
during conveyance. Thus, systems based on air-jet technology
[3,9,18] such as smart surface system avoid contact with con-
veyed objects and provide safer manipulation.

The work presented in this paper, whose contributions will
be presented in a dedicated section, is part of the smart sur-
face project which aims to increase the efficiency of future pro-
duction lines. The conveying principle consists in transporting
micro-objects from a starting block to a final destination using
controlled airflow coming from MEMS valves of the blocks. To
do so, the degradation of all MEMS valves involved in micro-
object transport has to be controlled. The reliability of MEMS
components is of major concern [23]. MEMS components suffer
from various failure mechanisms [29,35] that impact on their
performances, their lifespan and the availability of the entire
system. This highlights the need to monitor their behavior, as-
sess their health, or, even better, estimate their remaining time
before failure (RUL, Remaining Useful Life). According to health
estimation, it is essential to take appropriate decisions, such as
reconfiguration control and maintenance [32]. These tasks can
be done by using Prognostics and Health Management (PHM)
approaches [13,14,24].

For the clarity of the presentation, the PHM aspects are not
discussed. We focus on the algorithmic solution that allows thou-
sands of blocks to cooperate in order to optimally convey tiny
objects. The work is still relevant no matter the degradation
process used by the equipment. Consequently, the main contribu-
tion of this work is to propose an original distributed conveying
algorithm that manages both the short-term performance of the
conveying surface (transfer time of an object) and the long-term
performance (material lifespan).

This article is organized as follows. The next section presents
an overview of some analogous problems and underlines the
specificity of the conveying problem in a smart surface system.
Section 3 outlines the contributions of this work. Section 4 intro-
duces the distributed MEMS-based surface. Section 5 presents the
proposed algorithms and various ways to evaluate the quality of
a given conveying path. Section 6 describes the simulation and
the testing environment.

2. Related works

The optimization of transportation system lifetime by the
adoption of a smart routing strategy is a common problem in
intelligent transportation systems. In multi-hop wireless net-
works [1,8,16], for instance, naive data routing protocols lead
to the overuse of some nodes which can rapidly be discharged.
Packets routing policy needs to spread the used paths over the
network nodes. However, the problem discussed here presents
a major novelty. The links features (latency, throughput, capac-
ity, etc.) are generally considered static in telecommunication
networks. Smart surface conveying problem assumes that the
transfer time of a given block to its neighboring blocks varies over
time according to the block use.

In Road Network [12], the traffic optimization aims to avoid
congestion. As for the smart-surface conveying problem, external
events such as accidents and thunderstorms (in the road network)
or clogging and dust risks (in the smart surface) affect the sys-
tem. Furthermore, human behavior increases the uncertainty in
road network unlike the smart surface system where the human
intervention is nonexistent. However, in the road network the
infrastructure lifespan is not immediately impacted by the traffic
while the lifespan of the smart surface is partially determined by
the use of blocks.

To conclude, despite some similarities with well-known prob-
lems in transportation and communication fields, our problem re-
mains a particular case due to the millimeter scale of the system,
inducing hardware and software constraints (memory storage,
computing capabilities) and to the addressing of the degradation
state of the MEMS modules. Degradation effects make that a path
to convey an object could be good at a given moment and become
bad later.

Regarding the authors’ previous research, an initial study can
be found in [21]. The work presented here presents a more
realistic modeling and a significant extension of the precedent
study. The first major original addition of the current article
is the introduction of the effect of orientation changes on the
object transfer time. We also propose an incremental distributed
algorithm that reduces the amount of computational effort and
exchanged messages between blocks. The study is enriched with
a new optimization criterion (squares sum) that leads to a better
exploitation of the smart surface. In addition, a short state of the
art on the shortest path problems is given. Also, a related study
can be found in [34], which uses a non-scalable algorithm and
uses only one function for path quality assessment, both of them
being the main points addressed in this article.

3. Contributions

The distributed architecture of the platform and the conveying
algorithm aim to guarantee, among others, the modularity and
maintainability of the conveying system. The modularity means
that no block is compulsory for the system to work. The maintain-
ability concerns the ability of the system to fix some problems by
replacing only a subset of the system (some blocks), leading to
smaller maintenance costs.

The smart surface conveying problem is an original Multi-
Objective Shortest Path (MOSP) problem. The work presented
here focuses on a sequential conveying system where a new
object is introduced once the previous object is removed from
the surface. This assumption allows us to ignore, at this stage of
the work, physical collisions between objects. The paper presents
an original study about how to manage the trade-off between the
short-term performance of the surface (transfer time of an object)
and the long-term performance (surface lifespan).

In this context, the distributed optimization of the convey-
ing paths is a complex task. The computational and memory

100 H. Mabed and E. Dedu / Journal of Parallel and Distributed Computing 144 (2020) 98–108

limits of each block make necessary to provide algorithmic solu-
tions with low and constant spatial complexity (memory storage
requirement). Proposed procedures guarantee a computational
complexity of less than O(m) on every block, where m is the num-
ber of blocks. We are showing that the algorithm convergence is
reached with a time complexity of O(m).

4. The distributed MEMS-based conveyor

As already shown in Fig. 1, the conveying surface is described
by a 2D grid of decentralized micro-blocks. Each block presents
a square surface with a sensor that can detect when an ob-
ject is above the block, an actuator formed by MEMS valves, a
micro-controller executing code, a power supplier, and a net-
work module allowing communication with its four neighboring
blocks. The valves allow air to flow and push the object above the
block to one of the neighboring blocks. When an object reaches
its destination, it gets out of the surface, and a new object enters
the system.

There are a lot of challenging issues to be tackled from a
technological perspective, such as the fabrication of these micro-
devices (sensor, actuator, controller, communication module) and
their integration inside the block, and controlling the object above
the surface (air levitation is always unstable, the direction de-
pends on object shape and size, so the object can be correctly
conveyed only through the cooperation of several blocks). Solving
the whole problem requires solving the different parts of it. In
the current article we abstract down the problem to a planar
conveying problem, presented in the following, and focus on it.

Let us assume a smart surface of m blocks. We notice by C(b),
initially 0, the number of objects that crossed the block b. A block
is then associated with two dynamic values that describe its state:
the RUL and the transfer time.

4.1. Block characteristics

The RUL of a block designates the number of times that the
block can again be used before the start of revision procedure.
When the RUL of a block reaches 0, the smart surface is stopped
and overused blocks are fixed or replaced. We consider that the
initial RUL, corresponding to the maximum number of uses of
a block, is specified by the manufacturer as part of the device’s
technical characteristics.

Definition 1. RUL(b) is the remaining number of times that the
block b can be used before the maintenance.

A block, b, is also associated to T (b) value that refers to the
time needed to move an object from the block to an adjacent
one. T (b) depends on the state of the valve, i.e. the more the
valve is used, the more the valve becomes inefficient. The trans-
fer time is subject to variations over time due to a variety of
causes. To forecast the next transfer time on a given block, the
degradation model may include criteria such as transfer time of
the last object(s), number of uses, frequency of uses and last use
date. Section 6 describes the two degradation models we used
in tests to simulate the variation of the transfer time of blocks.
The transfer time on a given block depends also on the need of
object re-orientations, i.e. the precedent and the next blocks are
not aligned. Every time the object changes its motion orientation,
the smart system stops its progression then pushes it toward the
new direction. The re-orientation of an object requires additional
time corresponding to the stop-restart procedure.

In the absence of PHM mechanisms, each block estimates its
own transfer time as the experienced transfer time during the
last use of the block. Consequently, the effective transfer time of
the object following the optimal found path could be different

from the estimated value (see Section 6). After every use of the
block b, the transfer time value T (b) is updated. The initial value
of transfer time corresponds to the manufacturing value specified
by the constructor.

Definition 2. T (b) is the recorded transfer time during the last
use of the block b.

4.2. Path characteristics

The distributed protocol aims to compute in real time, the best
path from the initial position of an object to its final position.
When an object is detected and the final position known, the
blocks determine the best path that increases the surface lifetime
and reduce the transfer time. The transfer time of a given path is
calculated as follows:

T (p = [b1..bn]) =

∑
bi∈p

T (b) + To(bi−1, bi, bi+1) (1)

where To(bi−1, bi, bi+1) refers to the re-orientation time needed
to push an object coming from bi−1 ∈ p toward bi+1 ∈ p when
bi−1, bi and bi+1 are not aligned.

To(bi−1, bi, bi+1) =

{
0 if bi−1, bi, bi+1 are aligned
1 otherwise

}
(2)

However, whereas the evaluation of a path transfer time is
simply computed by the sum of the transfer times of the tra-
versed blocks (Eq. (1)), the evaluation of the system lifespan on
the basis of the RUL(b) values is a complex question. In this paper
we study different measurement functions of the RUL of a path.
Each block tries to optimize the RUL of the remaining path before
reaching the final position. The RUL of a path p starting from
the block b1st is computed using the recursive function RUL(p)
described in Eq. (3), where F is a function to be defined:

RUL(p) = F (RUL(p − {b1st}), RUL(b1st)) (3)

F is a monotonic function that should be defined in such a manner
that it respects the following condition:{

∀p, ∀b, RUL(p) ≤ F (RUL(p), RUL(b))
or

∀p, ∀b, RUL(p) ≥ F (RUL(p), RUL(b))

}
(4)

The monotonicity feature prevents inconsistent functions F where
adding loops in a path may improve its evaluation.

5. Multi-criteria distributed conveying algorithm

This section presents a brief state of the art on shortest
path problems, and afterward the proposed algorithm called
incremental massively distributed algorithm. The incremental
massively distributed algorithm presents an improvement of the
massively distributed algorithm published in [21].

5.1. State of the art on shortest path problems

The shortest path problem is one of the most fundamen-
tal network optimization problems, used in various fields such
as telecommunication [22], transportation [15], production sys-
tems [27]. In the graph theory, this problem consists in finding
a path between two nodes in a graph by minimizing the total
weight of the path. Weights refer to any metric that describes
the effort to traverse the path, such as length, time, cost, etc. The
literature divides the shortest path problems in three categories:

• Single-source: find a shortest path from a given source node
to each of the nodes.

H. Mabed and E. Dedu / Journal of Parallel and Distributed Computing 144 (2020) 98–108 101

Table 1
Examples of shortest path algorithms (V is the number of nodes and A is the
number of edges in the graph).
Algorithm Characteristics Speed

Dijkstra – single source – O(V 2)
– positive weight – fast
– optimal

Bellman-Ford – single source – O(|V |.|A|)
– negative weight – slower than
– negative cycles Dijkstra
- optimal

Floyd-Warshall – all pairs – O(|V |
3)

– negative weight – slower than
– negative cycles Dijkstra
– optimal

A* – single pair – depends on the
– heuristic, optimality heuristic
Not guaranteed – fast

• Single-pair: given two nodes, find a shortest path between
them. This is a particular case of single source category.

• All-pairs: find the shortest path for each pair of nodes.

The best known algorithms for solving this kind of problems are:
Dijkstra’s [6], Bellman–Ford [20], A* [36], Floyd–Warshall [11]
and dynamic programming algorithms [19,30], [28, page 185].
The characteristics of these algorithms are given in Table 1. Over-
all, it has to be noted that the algorithms based on computing
the best path from multiple sources to multiple destinations (all
pairs) are not relevant for our problem: path quality dynamically
changes during object conveyance, and we just need the optimal
path from the current position of the object to its destination.

5.2. Multi-objective shortest path problems

Real world problems have often a multi-objective nature
[4,25]. In shortest path problems, it is not unusual that the paths
be evaluated according to several criteria at the same time such
as the distance, the cost, the time, the number of hops, etc.

In major works on multi-objective shortest path optimization,
the problem is modeled by a graph where each node or edge is
labeled with a vector of weights, one per objective [5,26]. The
quality of a path according to a given objective is then measured
as the sum of the weights of the nodes or edges belonging to
the path. Object conveying problem with the smart surface is an
original problem. Indeed, the impact on the smart surface lifespan
of conveying an object cannot be simply evaluated as the sum of
the wear (RUL) of the crossed blocks. More subtle formulation of
the path impact on the smart surface RUL is to be studied, as it
will be shown in Section 5.5.

5.3. Standard Dijkstra’s algorithm

We decided to reuse the well-known Dijkstra’s algorithm by
reason of the similarities between the studied problem and the
shortest path problem. According to the literature, Dijkstra’s al-
gorithm has the smallest complexity among all the algorithms
finding the optimal solution. However, Dijkstra’s algorithm was
conceived for mono-criterion problems. Hence it needs to be
adapted to fit our multi-criteria problem.

A first version of the algorithm was presented and analyzed
in [34] and used in [31] to discover how the optimal path evolves
in time during conveyance. The modified Dijkstra’s algorithm,
presented in Algorithm 1, returns the path with the higher mini-
mum RUL over the crossed blocks (MaxMin RUL). If several paths
have the same MaxMin RUL, the path with minimum transfer
time is then returned. To obtain this algorithm, authors started

with an original Dijkstra’s algorithm that minimizes the transfer
time and then modified the initialization part and the relaxation
part (lines 4, 8, 16 and 18 have been added, and line 17 has been
modified) to maximize the RUL. The obtained algorithm main-
tains the same complexity as the original Dijkstra’s algorithm, and
is still optimal.

Algorithm 1 Modified Dijkstra’s algorithm.
Require: RUL[], T[], dest
Ensure: best path toward dest: next[]
1: for each block x in the surface do
2: bestT[x] = ∞

3: bestRUL[x] = 0
4: next[x] = undefined
5: end for
6: bestT[dest] = T[dest]
7: bestRUL[dest] = F(RUL[dest])
8: Q = initially contains the source node
9: while Q is not empty do

10: y = node in Q with best RUL in bestRUL[]
11: remove y from Q
12: for each neighbor x of y do
13: if x ̸= dest then
14: timeThroughY = bestT[y] + T[x]
15: RULThroughY = F(bestRUL[y], RUL[x])
16: if (RULThroughY,timeThroughY) is better than (be-

stRUL[x],bestT[x]) then
17: bestRUL[x] = RULThroughY
18: bestT[x] = timeThroughY
19: next[x] = y
20: add x to Q
21: end if
22: end if
23: end for
24: end while

In this first algorithm, each block computes the complete
path toward the target position of the object, and stores it in
next[] vector. In addition, each block stores the current estimated
lifetime, RUL(b), and transfer time, T (b), of all the blocks. Each
time the best path from a neighbor is computed, it is compared
with the path provided by the other neighbors (line 17). The
‘‘better than’’ relation between two paths is determining for the
optimization strategy and will be discussed in Section 6 (simula-
tion results). In other words, the ‘‘better than’’ relation expresses
the selection procedure among two possible paths evaluated ac-
cording to the same criterion.

Definition 3. Let s1 and s2 be two paths with the same source
and destination block and let (f1, . . . , fn) be n evaluation criteria.
s1 is said dominating s2 if and only if:

• ∀fi, fi(s1) is better than or equal to fi(s2)
• and ∃fj | fj(s1) is better than fj(s2).

This first algorithm has some drawbacks:

• Memory: The memory complexity of the algorithm is O(3×

m), corresponding to the storage of RUL, T and next data.
The memory limitation of the micro-modules makes this al-
gorithm non scalable when the number of blocks increases.

• Time: Every block contained in the best path will initiate
the procedure only when the object is present above it.
Therefore, the transfer time includes also the computation
of the best path. Note, however, that, with the trade-off
of increasing network usage, this point could be ignored if

102 H. Mabed and E. Dedu / Journal of Parallel and Distributed Computing 144 (2020) 98–108

every block sends the entire optimal path to the next block
before or during moving the object.

• Network: The storage by each block of the RUL and T data
of every block means that the update procedure used to
broadcast the changes to each block of the smart surface
needs |p ∗ | × (m − 1) exchanged messages, where |p ∗ |

represents the length of the best path found. In that case, the
algorithm could not be started until the update procedure
has finished. In case of numerous blocks, this can slowdown
the conveying procedure.

5.4. Massively distributed algorithm

In [21], we proposed a synchronous algorithm which avoids
the drawbacks above. Each block stores three scalar values cor-
responding to its RUL, T and next . Where next refers to the next
block to convey the object until the dest position. Therefore, the
memory complexity of the algorithm is reduced to a constant
value O(1), making the algorithm scalable.

While in Algorithm 1, blocks proceed sequentially, in mas-
sively distributed algorithm, optimal sub-paths are computed
by the blocks in distributed way. Every time the block receives
an OPTIMIZE message, it updates its optimal path by may be
changing its next block and informs its neighbors by this change.

Algorithm 2 Massively distributed Dijkstra-based algorithm.
Require: myRUL, myT, dest
Ensure: best path from me toward dest: next
1: bestRUL = worstValue
2: bestT = ∞

3: if self == dest then
4: send message OPTIMIZE(self, myRUL, myT) to all neighbors
5: end if
6: for each round do
7: if self receives a message OPTIMIZE(v, pathRUL, pathT)

then
8: if (F(myRUL,pathRUL),myT+pathT) is better than (be-

stRUL,bestT) then
9: bestRUL = F(myRUL,pathRUL)

10: bestT = myT+pathT
11: next = v
12: if self is not the source of the object then
13: send message OPTIMIZE(self, bestRUL, bestT) to all

neighbors except v
14: end if
15: end if
16: end if
17: end for

To ensure that no better path will be found by its neighbors
(proof can be found in [21]), each block runs the algorithm 2 for
nbmaxround rounds, where:

nbmaxround =
m
2

+ max
(x
2

+ ỹ,
y
2

+ x̃
)

(5)

x, y are the number of columns and lines of the surface (x×y =

m) respectively, and Ñ is equal to N if N is odd and 0 otherwise
(Ñ = N × N%2).

5.4.1. Incremental massively distributed algorithm
The objective of the incremental version of the massively

distributed algorithm is to reduce the amount of computation,
energy consumption and the number of exchanged messages
needed to determine the best path. To that end, we take advan-
tage of the results of the previous computations.

Let us take the following example: at instant t , an object
located at the block S1 needs to be conveyed to the destination
block D. After running the massively distributed algorithm, the
variable next of the block S2 ̸= S1 designates the best next hop to
reach D from S2. Now, another object needs to be moved towards
D starting from S2. If no block within the path between S2 and D
was crossed since t , then the path P remains valid and does not
need to be computed again. This idea is explored in Algorithm 3,
where each block stores a vector next[] of m entries and next[b]
refers to the best next block to reach the block b (or NULL if the
path to the block b is not yet known).

Algorithm 3 Incremental distributed algorithm.
Require: myRUL, myT, dest, next[]
1: for all d, bestRUL = WorstValue
2: for all d, bestT = ∞

3: for all d, next[d] = NULL
4: for all d, isModified[d] = false
5: if self == dest then
6: send message OPTIMIZE(self, myRUL, myT) to all neighbors
7: end if
8: for each round do
9: if isModified[dest] AND rand()< prob AND self receives a

message OPTIMIZE(v, pathRUL, pathT) then
10: if (F(myRUL,pathRUL),myT+pathT) is better than (be-

stRUL,bestT) then
11: bestRUL = F(myRUL,pathRUL)
12: bestT = T(self)+pathT
13: next[dest] = v
14: if self is not the source of the object then
15: send message OPTIMIZE(self, bestRUL, bestT) to all

neighbors except v
16: end if
17: end if
18: end if
19: end for
20: isModified[dest] = false

When an object crosses a block b provoking changes of its
RUL and T values, all the paths involving the block b are erased
by setting to NULL the values next[], as depicted in Algorithm 4.
Note that this algorithm is run only in incremental case, after
Algorithm 3. More precisely, ∀n ∈ Neighbors(b) and ∀b with
nextn[b] = b, nextn[b] is set to NULL, where nextn[] refers to the
vector next stored by the node n. Recursively, ∀ modified nextn[b]
and ∀n′

∈ Neighbors(n) with nextn′ [b] = n, nextn′ [b] is set to NULL,
and so on. A flag vector isModified is used to report paths which
need to be recomputed.

Additionally, we consider a heuristic variant of the algorithm.
To further reduce the number of exchanged messages, we pro-
pose that blocks do not systematically recalculate the best path to
the dest block. This relies on the fact that during the conveyance
of an object, the variation of the optimal path is often marginal.
Therefore, it is counterproductive for a block to re-compute the
new path each and every time the current stored path is modified
(next[]) and to inform neighboring blocks of this change. A re-
computing probability prob is used (see algorithm 3, line 9) to
trigger the recalculation of the variable next[dest]. As such, this
variant leads to sub-optimal paths, but reduces the number of
exchanged messages.

Compared to the initial massively distributed algorithm, the
incremental version increases the memory complexity of the al-
gorithm from O(1) to O(2×m). Therefore, the improvement of the
computational complexity of the incremental version should be

H. Mabed and E. Dedu / Journal of Parallel and Distributed Computing 144 (2020) 98–108 103

Algorithm 4 Procedure executed during object conveyance.
Require: myRUL, myT, dest, next[]
1: for each round do
2: if the object is on self then
3: push the object to next[destination] {move the object to

the next position}
4: send message UPDATE(self, NULL) to all neighbors
5: else if self receives message UPDATE(v, dest) then
6: if dest == NULL then
7: for each destination d do
8: if next[d] == v then
9: isModified[d] = true

10: send message UPDATE(self, d) to all neighbors
except v

11: end if
12: end for
13: else
14: if next[dest] == v then
15: isModified[dest] = true
16: send message UPDATE(self, dest) to all neighbors

except v
17: end if
18: end if
19: end if
20: end for

sufficiently high to justify the lack of memory scalability. The ter-
mination condition is identical, with the same time complexity.
Furthermore, the number of OPTIMIZE messages cannot exceed
3 × MaxRounds in both algorithms, and in the heuristic variant
it is even smaller. The efficiency of the incremental mechanism
will then be assessed according to the real number of exchanged
UPDATE messages that determines the needed computational
effort.

5.5. Optimization criteria

The aforementioned algorithms use an objective function F to
compute the quality of a given path. Not only it defines what the
best path is, but also the desired trade-off between the short-
term (fast object conveyance) and the long-term vision (high
system lifespan). Consequently, the choice of this function is a key
factor for the efficiency of the proposed solution. In this section,
we present various ways to combine the two criteria (RUL and
T) within a single function F . The global lifetime of the system
relies on the lifetime of each block, and especially the impact of
a given conveying path on the system durability. In a precedent
work [21] we performed a detailed study on the optimization
criteria modeling. We retake here only the two following:

MaxMin RUL function The RUL of a path, to maximize, is the
smallest RUL among the RUL of path’s blocks:

max
p

RUL(p) = max
p

min(RUL(p − {b1st}), RUL(b1st)) (6)

= max
p

min
b∈p

RUL(b)KaisaMiettinen (7)

If two paths have the same RUL, the path with the better transfer
time is considered.

Squares function The RUL of a path, to minimize, is the sum
of the squares of the uses number C(b) over the path’s blocks:

min
p

RUL(p) = min
p

∑
(RUL(p − {b1st}), C(b1st)2) (8)

= min
p

∑
b∈p

C(b)2 (9)

If two paths have the same RUL, the path with the better transfer
time is considered.

6. Experiments

This section has for objective to prove the relevance of the con-
veying distributed algorithm in smart surface. We will describe in
turn the conveying scenarios and smart surface platform simula-
tor. Then we assess the relevance of the different optimization
strategies (optimization criteria) and we study the performance
of the incremental distributed algorithm.

6.1. Scenarios

To propose representative set of test scenarios, we conceived
10 scenarios with different smart surface sizes, different rules for
generating initial and final positions of the objects and different
degradation processes. Simulated smart surface sizes vary from
10 × 10 to 40 × 40 (1600 blocks). The initial and final positions
of conveyed objects are generated following two different rules.
In the ‘‘any’’ rule, the initial and final positions are selected
randomly and could be any block in the smart surface. While in
‘‘edge’’ rule, the initial and final positions are located on one of the
four sides (first or last line or column) of the smart surface. Each
rule corresponds to a class of conveying problems. The ‘‘any’’ rule
is suitable for manipulation and placement applications, when
‘‘edge’’ rule fits filtering or classification applications.

At this stage of the work, a real PHM model is not used. So the
blocks Remaining Useful Life (RUL) is estimated according to the
number of block uses. We assume that blocks are designed for a
maximum number of uses, Cmax. The block RUL can be deduced
from the number of uses of the block using equation:

RUL(b) = Cmax − C(b) (10)

Finally, to enlarge the scenarios diversity, we studied two
different degradation models. The degradation models describe
how the performances (transfer time) of the blocks are impacted
by the successive valves activation. The first degradation model
represents a realistic degradation model [33,34] called exponen-
tial model. Every time the block is used, its transfer time increases
by a probabilistic value following an exponential distribution
with mean α.

T (b) = T (b) − α log(RND) (11)

where RND is a randomly selected value in the interval [0,1].
In the second degradation model, called idle-based model, we

introduce the period during which a block was not used as a
factor of the degradation. The objective is to push the system to
regularly select every block in order to conserve the valves health
state. This way, the transfer time of a given block varies according
to the following expression:

T (b) = T (b) − α log(RND) + β × U(b) (12)

U(b) represents the number of cycles during which the block b
has not been used.

It should be recalled that the degradation model is not a
prediction model used by blocks to forecast their future transfer
time. Indeed, blocks refer to their last transfer time (during an
object conveying) as the current T (b). The degradation model
is used to simulate the gap between the predicted path per-
formance (during the distributed algorithm phase) and the real
performance (during the conveying simulation). The simulator
functioning scheme is depicted in Fig. 2.

104 H. Mabed and E. Dedu / Journal of Parallel and Distributed Computing 144 (2020) 98–108

Fig. 2. Simulator architecture. At each iteration, the conveying of a new object
is simulated (initial and final positions), and the algorithm is run to compute
the path that should be followed by the object.

6.2. Simulator

We implemented a simulator in VBA Microsoft Excel. The sim-
ulator executes a given scenario until a maintenance procedure
is required as a result of a block end of life (∃b, RUL(b) = 0).
At each iteration of the simulator (see Fig. 2), a new object is
generated with its initial and final positions. According to the last
experienced T(b) and the current RUL(b), a path is computed to
convey the object from its initial to the final position. Then the
simulation of the conveying process is started. The object crosses
over the blocks of the computed path according to the transfer
times simulated using the degradation model (Eqs. (11) or (12)).

For all the tests presented hereafter, we used the following
parameters: Cmax = 100, T0 = 1 s, α = 10 s, β = 0.1 s, To = 0.3 s.
We assume that the smart surface is unused at the beginning of
the simulation, i.e. ∀b, C(b) = 0.

6.3. Optimization criteria comparison

The behavior of each of the two studied criteria (MaxMin RUL
and Square Sum objective) is depicted in Fig. 3, where the color of
each block designates its wear level at the end of the simulation
(when the RUL of a given block reach 0). We also show, in Fig. 3
the wear state of the smart surface at the end of the simulation
using two other criteria: the minimum transfer time path and
the straight line path. As we can see, the use of the sum of RUL
square allows a better exploitation of the smart surface with a
good partition of the block usage.

Figs. 4–6 show the comparison results between the squares
sum based optimization and the MaxMin RUL based optimization.
The comparison is made, respectively, on the basis of the num-
ber of conveyed objects, the average transfer time of conveyed
objects and the average transfer time of the first 200 conveyed
objects. The latter is important since a surface which conveys
more objects will clearly be more degraded at the end than a
surface which only conveys a few objects. Also, the average on the
first 200 objects allows to assess the conveyance rapidity during
the starting period of the system.

Figs. 4–6 show that the function evaluating the entire path’s
blocks such as square function performs better than the function
that relates only a part of the path, such as MaxMin RUL function.
Indeed, trying at any cost to avoid overused blocks leads to more
crossed blocks with only marginally less degradation. Further-
more, the maximum block use does not capture the values of the
other blocks in the path. Thus, two paths with equal minimum
block RUL can be completely different when considering all the
blocks of the path.

We also observe (Fig. 5) that Squares sum based optimization
provides a better average transfer time even though the average
value is computed for a longer period; i.e. more conveyed objects.
The transfer time efficiency of Squares sum based optimization is
better observed when the comparison is restricted to the 200 first
conveyed objects (Fig. 6).

6.4. Incremental algorithm performance

Let us recall that the heuristic incremental algorithm reduces
the computation time and the number of exchanged messages
to the detriment of memory and particularly the accuracy of
the results. Computation time and memory have already been
presented. Thus, this section considers the other criteria.

Figs. 7 and 8 compare incremental and non-incremental algo-
rithms in terms of the number of exchanged messages and the
number of conveyed objects. We observe that the variation of the
prob parameter allows to adjust the desired trade-off between the
optimality of the used paths and the number of messages needed
to guarantee this optimality. On the one hand, the smaller the
value of prob parameter, the smaller the number of conveyed
objects (due to lower quality paths being used). On the other
hand, smaller prob values produce fewer exchanged messages
and thus faster convergence and less energy consumption. We
also observe that the system lifespan (number of conveyed ob-
jects) is not significantly degraded when the optimal paths are
not systematically updated. For the scenario No 6, compared to
the non-incremental algorithm, updating the optimal path only
every 20% of time reduces the number of conveyed objects by
less than 0.8% (903 − 895 = 8 fewer objects) while the number
of exchanged messages is reduced by 10%. In practice, it is up
to the decision maker to specify the balance between the algo-
rithm lightness and solution optimality considering the effective
capacity of blocks and surface dimensions.

Finally, we observe that for relatively big surfaces, the reduc-
tion of exchanged messages is less significant. For example, in
20:edge:lin scenario (in bold in the table), the number of mes-
sages goes from 16M (non-incremental method) to 10M (using
prob = 5%). The reason is that the average conveying path length
increases with the surface size. The probability that an optimal
path needs to be updated depends on the parameter prob and the
number of hops to the destination block as given by the following
formula:
t∑

i=0

(1 − prob)i × prob (13)

where t is the length of the stored optimal path between a
source and a destination block. We conclude that prob parameter
needs to be adjusted according to the surface size: the bigger the
surface, the smaller the prob parameter.

7. Conclusion and perspectives

In this paper, we have studied the optimization of objects con-
veyance with a modular distributed MEMS surface. We proposed
a bi-criteria optimization model that takes into account a short-
term objective consisting to convey the current object as soon as

H. Mabed and E. Dedu / Journal of Parallel and Distributed Computing 144 (2020) 98–108 105

Fig. 3. Wear level of a smart surface with 20 × 20 blocks at the end of 4 simulations with the different optimization criteria: square sum, MinMax RUL, Minimum
Transfer time and straight line move. Darker is the block lower is the RUL.

Fig. 4. Comparison of the number of conveyed objects on the 10 studied scenarios (x-axis) according to the optimization criteria.

106 H. Mabed and E. Dedu / Journal of Parallel and Distributed Computing 144 (2020) 98–108

Fig. 5. Comparison of the transfer time of conveyed objects on the 10 studied scenarios (x-axis) according to the optimization criteria.

Fig. 6. Comparison of the transfer time of the 200 first conveyed objects on the 10 studied scenarios (x-axis) according to the optimization criteria.

Fig. 7. Comparison of the number of conveyed objects on the 10 studied scenarios (x-axis) according to the incremental probability parameter prob.

H. Mabed and E. Dedu / Journal of Parallel and Distributed Computing 144 (2020) 98–108 107

Fig. 8. Comparison of the number of exchanged messages on the 10 studied scenarios (x-axis) according to the incremental probability parameter prob.

possible to its final position, and a long-term objective related to
the extension of the system lifespan. We studied different ways to
combine these two criteria within a single objective function used
by the optimization algorithm. Our results show that methods
based on the transformation of the RUL value to distinguish
overused blocks from under-used blocks (such as square sum
function) provide the best results.

We also implemented an incremental distributed algorithm
that allows every block to reuse optimal paths previously found
which leads to reduce the number of exchanged messages. The al-
gorithm presents a linear complexity, guaranteeing the scalability
of the system with respect to the number of blocks.

The results obtained are encouraging since the lifespan of the
system is extended with the use of the square sum criterion
by up to 160% compared to naive direct line approach without
degrading the conveying speed. Approaches that make the short-
term objective a priority, such as direct line or transfer time
minimization, lead to an unbalanced (heterogeneous) use of the
surface blocks (see Fig. 3). Later this unbalance provokes the
degradation of the conveying speed as well. This is due to the
relationship between the blocks RUL and the degradation of the
transfer time. Hence, we have analyzed two different degrada-
tion models defining this relationship called exponential and idle
based degradation model. In both cases, the square sum objective
performs better than the other criteria according to the number
of conveyed objects and the average transfer time of an object.

The incremental version of the massively distributed algo-
rithm allows adjusting the number of exchanged messages ac-
cording to the desired degree of optimality. For instance, on the
scenario No 10, the use of an updating probability of 1% divides
the number of exchanged messages by 4, while the number of
conveyed objects has decreased by only 4%.

The main limitation of this work is the sequential introduc-
tion of the objects on the smart surface. It is then necessary to
adapt the algorithmic solutions in order to take into account the
conveying of several objects at the same time. Also, for more ac-
curate modeling of the problem, it will be interesting to associate
4 different transfer times to each block according to the next
neighboring block. Finally, we need to consider that a single block
is not sufficient to control an object, hence several neighboring
blocks need to collaborate to move the objects.

CRediT authorship contribution statement

Hakim Mabed: Conceptualization, Formal analysis, Methodol-
ogy, Software, Writing. Eugen Dedu: Formal analysis, Validation,
Writing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] D.M. Blough, P. Santi, Investigating upper bounds on network lifetime
extension for cell-based energy conservation techniques in stationary ad
hoc networks, in: International Conference on Mobile Computing and
Networking, Atlanta, GA, USA, 2002, pp. 183–192.

[2] K. Boutoustous, G.J. Laurent, E. Dedu, L. Matignon, J. Bourgeois, N.L. Fort-
Piat, Distributed control architecture for smart surfaces, in: Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on,
2010, pp. 2018–2024.

[3] B. Dahroug, G.J. Laurent, V. Guelpa, L. Fort-Piat, et al., Design, modeling and
control of a modular contactless wafer handling system, in: Robotics and
Automation (ICRA), IEEE International Conference on, 2015, pp. 976–981.

[4] K. Deb, Multi-objective optimization, Search Methodol. (2013) 403–449.
[5] S. Demeyer, Multiple objective shortest path algorithms for transportation

problems, 2009, pp. 72–73.
[6] E.W. Dijkstra, Communication with an Automatic Computer (Ph.D. the-

sis), University of Amsterdam, 1959, http://www.cs.utexas.edu/users/EWD/
PhDthesis/PhDthesis.PDF.

[7] M. Edo, Y. Watanabe, O. Morita, H. Nakazawa, E. Yonezawa, Two-
dimensional micro conveyer with integrated electrostatic actuators, in:
Micro Electro Mechanical Systems, 1999. MEMS ’99. Twelfth IEEE
International Conference on, 1999, pp. 43–48.

[8] P. Floréen, P. Kaski, J. Kohonen, P. Orponen, Lifetime maximization for
multicasting in energy-constrained wireless networks, IEEE J. Sel. Areas
Commun. 23 (1) (2005) 117–126.

[9] Y. Fukuta, Y.-A. Chapuis, Y. Mita, H. Fujita, Design, fabrication, and control
of mems-based actuator arrays for air-flow distributed micromanipulation,
Microelectromech. Syst. J. 15 (4) (2006) 912–926.

[10] P. Helin, M. Calin, V. Sadaune, N. Chaillet, C. Druon, A. Bourjault, Micro-
conveying station for assembly of micro-components, in: Intelligent Robots
and Systems. IROS, Proceedings of the IEEE/RSJ International Conference
on, Vol. 3, 1997, pp. 1306–1311.

[11] S. Hougardy, The Floyd-Warshall algorithm on graphs with negative cycles,
Inform. Process. Lett. 110 (8) (2010) 279–281.

[12] H. Huang, S. Gao, Optimal paths in dynamic networks with dependent
random link travel times, Transp. Res. B 46 (5) (2012) 579–598.

http://refhub.elsevier.com/S0743-7315(20)30295-1/sb2
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb2
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb2
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb2
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb2
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb2
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb2
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb3
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb3
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb3
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb3
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb3
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb4
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb5
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb5
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb5
http://www.cs.utexas.edu/users/EWD/PhDthesis/PhDthesis.PDF
http://www.cs.utexas.edu/users/EWD/PhDthesis/PhDthesis.PDF
http://www.cs.utexas.edu/users/EWD/PhDthesis/PhDthesis.PDF
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb7
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb7
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb7
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb7
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb7
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb7
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb7
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb8
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb8
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb8
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb8
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb8
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb9
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb9
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb9
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb9
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb9
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb10
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb10
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb10
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb10
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb10
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb10
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb10
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb11
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb11
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb11
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb12
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb12
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb12

108 H. Mabed and E. Dedu / Journal of Parallel and Distributed Computing 144 (2020) 98–108

[13] K. Javed, A Robust and Reliable Data-Driven Prognostics Approach Based on
Extreme Learning Machine and Fuzzy Clustering (Ph.D. thesis), University
of Franche-Comté, Besançon, France, 2014.

[14] L. Jay, W. Fangji, Z. Wenyu, G. Masoud, L. Linxia, S. David, Prognostics
and health management design for rotary machinery systems reviews,
methodology and applications, Mech. Syst. Signal Process. 42 (1) (2014)
314–334.

[15] Z. Jiang, Y. Jiao, Y. Sheng, X. Chen, A novel model and its algorithms for the
shortest path problem of dynamic weight-varying networks in intelligent
transportation systems, J. Intell. Fuzzy Systems 33 (5) (2017) 3095–3102,
http://dx.doi.org/10.3233/JIFS-169361.

[16] I. Kang, R. Poovendran, On lifetime extension and route stabilization of
energy-efficient broadcast routing over MANET, in: International Network
Conference, London, UK, 2002, pp. 81–88.

[17] M.G. Kay, Material handling equipment, 2012, http://www.ise.ncsu.edu/
kay/Material_Handling_Equipment.pdf.

[18] S. Konishi, H. Fujita, A conveyance system using air flow based on the
concept of distributed micro motion systems, Microelectromech. Syst. J. 3
(2) (1994) 54–58.

[19] M. Kröger, Shortest multiple disconnected path for the analysis of entan-
glements in two and three-dimensional polymeric systems, Comput. Phys.
Comm. 168 (3) (2005) 209–232.

[20] S. Lewandowski, Shortest Paths and Negative Cycle Detection in Graphs
with Negative Weights, Tech. rep., University of Stuttgart, 2010.

[21] H. Mabed, E. Dedu, H. Skima, Multicriteria optimization in dis-
tributed micro-conveying platform, in: 32nd ACM Symposium on Applied
Computing (SAC), ACM, Marrakesh, Morocco, 2017, pp. 241–248.

[22] D. Medhi, K. Ramasamy, Network Routing - Algorithms, Protocols, and
Architectures, Morgan Kaufmann, 2007.

[23] K. Medjaher, H. Skima, N. Zerhouni, Condition assessment and fault
prognostics of microelectromechanical systems, Microelectron. Reliab. 54
(1) (2014) 143–151.

[24] K. Medjaher, N. Zerhouni, Hybrid prognostic method applied to
mechatronic systems, Int. J. Adv. Manuf. Technol. 69 (1–4) (2013) 823–834.

[25] K. Miettinen, Nonlinear Multiobjective Optimization, Springer Science &
Business Media, 2012.

[26] S. Mohideen, B.R. Balachandran, A comparative analysis of multi objective
shortest path problem, Int. J. Eng. Sci. Technol. 2 (2010).

[27] K. Nip, Z. Wang, W. Xing, Combinations of some shop scheduling problems
and the shortest path problem: Complexity and approximation algorithms,
in: D. Xu, D. Du, D. Du (Eds.), Computing and Combinatorics - 21st
International Conference, COCOON 2015, Beijing, China, August 4-6, 2015,
Proceedings, in: Lecture Notes in Computer Science, vol. 9198, Springer,
2015, pp. 97–108, http://dx.doi.org/10.1007/978-3-319-21398-9_8.

[28] M.G.C. Resende, P.M. Pardalos, Handbook of Optimization in Telecommu-
nications, Springer, 2006.

[29] H.R. Shea, Reliability of MEMS for space applications, in: Reliability,
Packaging, Testing, and Characterization of MEMS/MOEMS, Vol. 61110,
Sans Jose, CA, USA, 2006, pp. 1–10.

[30] Y. Sheng, Y. Gao, Shortest path problem of uncertain random network,
Comput. Ind. Eng. 99 (2016) 97–105.

[31] H. Skima, E. Dedu, J. Bourgeois, C. Varnier, K. Medjaher, Optimal path
evolution in a dynamic distributed MEMS-based conveyor, in: International
Conference on Dependability and Complex Systems DepCoS-RELCOMEX,
Vol. 11, Springer, AISC 470, Brunów, Poland, 2016, pp. 395–408.

[32] H. Skima, K. Medjaher, C. Varnier, E. Dedu, J. Bourgeois, Hybrid prog-
nostic approach for Micro-Electro-Mechanical Systems, in: IEEE Aerospace
Conference, Vol. 36, Big Sky, Montana, USA, 2015, pp. 1–8.

[33] H. Skima, K. Medjaher, C. Varnier, E. Dedu, J. Bourgeois, A hybrid prognos-
tics approach for MEMS: From real measurements to remaining useful life
estimation, Microelectron. Reliab. 65 (2016) 79–88.

[34] H. Skima, C. Varnier, E. Dedu, K. Medjaher, J. Bourgeois, Post-prognostics
decision making in distributed MEMS-based systems, J. Intell. Manuf. 30
(3) (2019) 1125–1136.

[35] D.M. Tanner, MEMS reliability: Where are we now?, Microelectron. Reliab.
49 (9) (2009) 937–940.

[36] W. Zeng, R. Church, Finding shortest paths on real road networks: the case
for A*, Int. J. Geogr. Inf. Sci. 23 (4) (2009) 531–543.

Hakim Mabed is an associate professor at the Univer-
sity of Bourgogne Franche-Comté (UBFC), France. He
is part of the FEMTO-ST institute (UMR CNRS 6174)
and the complex networks team where he does his
research. He received the HdR degree from the uni-
versity of UBFC in 2018 and obtained the Ph.D. degree
from the University of Angers, France in 2003. He
received the M.S. degree from the University of Algiers,
Algeria in 2000. His research interests are in distributed
intelligent MEMS, optimization, distributed algorithms,
self-reconfiguration, and Terahertz nanonetwork.

Eugen Dedu is assistant professor in computer sci-
ence at the Univ. Bourgogne Franche-Comté (UBFC) in
France, and member of the FEMTO-ST Institute/CNRS.
He obtained his habilitation in 2014, and his Ph.D.
in 2002. His current main research interests are in
communication in nanonetworks and in distributed
intelligent MEMS, and transport protocols in computer
networks, especially for video transmission. He has co-
authored more than 40 articles in international journals
and conferences on these topics.

http://refhub.elsevier.com/S0743-7315(20)30295-1/sb13
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb13
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb13
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb13
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb13
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb14
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb14
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb14
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb14
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb14
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb14
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb14
http://dx.doi.org/10.3233/JIFS-169361
http://www.ise.ncsu.edu/kay/Material_Handling_Equipment.pdf
http://www.ise.ncsu.edu/kay/Material_Handling_Equipment.pdf
http://www.ise.ncsu.edu/kay/Material_Handling_Equipment.pdf
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb18
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb18
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb18
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb18
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb18
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb19
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb19
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb19
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb19
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb19
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb20
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb20
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb20
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb21
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb21
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb21
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb21
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb21
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb22
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb22
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb22
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb23
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb23
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb23
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb23
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb23
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb24
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb24
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb24
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb25
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb25
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb25
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb26
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb26
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb26
http://dx.doi.org/10.1007/978-3-319-21398-9_8
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb28
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb28
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb28
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb30
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb30
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb30
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb31
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb31
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb31
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb31
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb31
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb31
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb31
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb32
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb32
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb32
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb32
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb32
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb33
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb33
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb33
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb33
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb33
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb34
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb34
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb34
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb34
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb34
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb35
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb35
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb35
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb36
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb36
http://refhub.elsevier.com/S0743-7315(20)30295-1/sb36

	Short and long term optimization for micro-object conveying with air-jet modular distributed system
	Introduction
	Related works
	Contributions
	The distributed MEMS-based conveyor
	Block characteristics
	Path characteristics

	Multi-criteria distributed conveying algorithm
	State of the art on shortest path problems
	Multi-objective shortest path problems
	Standard Dijkstra's algorithm
	Massively distributed algorithm
	Incremental massively distributed algorithm

	Optimization criteria

	Experiments
	Scenarios
	Simulator
	Optimization criteria comparison
	Incremental algorithm performance

	Conclusion and perspectives
	CRediT authorship contribution statement
	Declaration of competing interest
	References

