Parallelisation of Wave Propagation Algorithms
for Odour Propagation in Multi-Agent Systems

Eugen Dedu!, Stéphane Vialle!, and Claude Timsit?

1 Supélec, 2 rue Edouard Belin, 57070 Metz, France
dedu@ese-metz.fr, Stephane.Vialle@supelec.fr
2 University of Versailles, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
Claude.Timsit@prism.uvsq.fr

Abstract. One of the algorithms used in multi-agent systems is based
on the wave propagation model. This article discusses some sequential
(recursive, iterative, and based on distance) and parallel methods (fron-
tier exchanging, domain decomposition changing, private environments,
and mutex-based) to implement it. The mixing between these sequential
and parallel methods is also shown, and the performance of some of them
on two shared-memory parallel architectures is introduced.

Keywords: parallel algorithms, wave propagation model, multi-agent
systems.

1 Introduction

The situated multi-agent systems allow to simulate populations of agents. An
agent is defined as an entity found in an environment, which senses it by its per-
cepts and act upon it through its effectors [2]. One of the goals of the simulation
of populations of agents is to discover emergence: individual behaviours of agents
which give efficient global behaviours. The behaviour uses agent percepts. One
of the percepts used in multi-agent systems is the “odour”, simulated by a value
in each square proportional to its intensity [8]. These values, called potential in
the following, are spread by resources through the environment. A square may
be influenced by several resources. For our model, we have chosen that, when
a square is influenced by several resources, it receives the value of the strongest
potential (another hypothesis is taken in [8], where overlapping potentials add).
The potentials allow agents to find the way to resources in environment. As the
potential propagation represents in some cases a great part of the execution time
of the simulator [8], we studied their parallelisation.

This article is divided as follows. Firstly, we describe the wave propagation
model, used to propagate the potential of resources. Secondly, some sequential
methods to implement it are presented. General parallelisation methods and their
mixing with sequential ones are presented afterwards. Finally, the performance
of two parallel implementations, based on one sequential method, is described.

2 Wave Propagation Model

The potential propagation consists of spreading decreasing potentials from a
resource. It allows agents to find the way to resources by following increasing
potential. We have made the assumption in our model that the potential in each
square is equal to the potential of the resource minus the distance to it: p(d) =
pr — d. We use a 4-connectivity of squares. In an environment without obstacles,
the distance between two squares is simply |dy| + |dz|. However, in the presence
of obstacles, this formula is no longer appropriate. The wave propagation model
allows to surpass obstacles (Figure 1).

Example of

increasing

Y | potentia way,
avoiding
obstacles

! Il source

X obstacle

Fig. 1. Illustration of the potential spread by a resource.

3 Sequential Methods

3.1 Recursive Potential Computing

These methods create the potential fields by propagating successively the po-
tential of each resource. The propagation of each resource is done recursively.

Recursive with depth-first propagation. In this method, the propagation starts
from each resource and is recursively spread on the environment through a depth-
first mechanism while decreasing the value of the current potential (P(S) is the
potential in square S):
clear (set to 0) the potential of all the squares
for all square S containing a resource do
prop-square (S, P(95))

procedure prop-square (square S, potential p)
if P(S) < p then {S needs to be processed}
P(S)«p
if p > 1 then

for all neighbour N of S do
if S is not an obstacle then
prop-square (N, p —1)

The key point of this method is that the call to recursive function prop-square
gives a depth-first propagation. The depth-first recursion is simple to implement,
since it is automatically provided by modern programming languages. However,
this is a case where the depth-first search is not efficient. The reason is that
the potential of some squares is successively updated. Figure 2 presents such
an example, where the neighbours are taken in N, E, S, W order (potential of
resource is 4). The potential of the square at right of the resource receives two
values: It is firstly set to 1, then to its correct value 3. Moreover, an update of
the potential of a square generates also a recursive update of all its neighbours?.
Generally, the greater the potential of the resource, the bigger the number of
squares which receive multiple updates, and the greater the number of updates
which are needed in average for each square.

1 1
1121 2|1

3|21 1 3|12|1

411 4|3

Fig. 2. Two steps during the depth-first propagation of a resource. The square at the
right of the resource updates its potential twice.

Recursive with breadth-first propagation. We have implemented a similar method,
which avoids the successive unuseful updates (as given by the previous method)
by doing a breadth-first propagation. The breadth-first search mechanism and
the recursion were simulated with a (FIFO) queue that stores the elements used
in recursion.

Because this method uses the breadth-first search, each square is modified
only once. As such, the number of updates of squares is equal to the number of
squares in the potential field.

3.2 Iterative Potential Computing

These methods sweep several times the whole environment, updating each square
when necessary.

! For the sake of precision, the number of times each square (except the squares in N

direction) is updated is L’“—‘;‘lJ, where k is the final potential of the square.

Tterative with fized potential. This method is presented by Bouton [1], who has
worked in our team. It works by firstly putting the potential of each resource in
its square. Then, during the first iteration, all the environment is swept in order
to find all the squares containing the greatest potential p. Each time a square
with potential p is found, all its neighbours having potential less than p — 1
are given a potential of p — 1. During the second iteration, all the squares with
potential p — 1 are found and their neighbours with a lower potential are given
potential p — 2. The iterations continue until the potential 1 is reached. At this
step, the propagation is completely finished on all the environment.

This method has the advantage to be simple, so it does not add execution
overheads. Nevertheless, the high disadvantage of this method is that during each
step all the environment is swept, which leads to a lot of unnecessary processed
squares.

Tterative with variable potential. This is similar to the previous method. The
difference between them is that, during each step, instead of processing only
squares with a given potential p, this method compares each square with its
neighbours, updating it if one of them has a higher potential.

3.3 Distance-Storing Methods

These methods are characterised by the fact that each square stores not poten-
tials, but distances to resources. This is possible because the place of resources
is fixed during the simulation.

Distance-storing of all influent resources. In this method, each square stores the
identifier (a unique number) of every resource which can influence its potential
during the simulation, and the distance to it. When the potential of a square
needs to be known, the influence of each resource on it can be simply calcu-
lated by using the distances it stores and the actual potential of each concerned
resource. Then the strongest potential can be chosen.

This method has the advantage that the potential can be computed on de-
mand (only for the needed squares), which can be very fast. As an example, if
agents are found on 1% of the squares, then the potential of a maximum of 5%
of the squares is calculated (the square itself and its four neighbours). Another
advantage of this method is that the computations for each square are indepen-
dent, so no special parallelisation method (to avoid parallelisation conflicts) is
needed. Nevertheless, its drawback is that it has a high memory requirement,
because it stores in each square information about every resource which can
influence it.

Distance-storing of the most influent resource. This method looks like the pre-
vious one. However, instead of storing in each square the identifier of all the
resources which can influence it, it stores the identifier of only the most influent
one. The most influent resource is the resource which gives the potential of the
square, i.e. it gives the maximum potential in the case of overlapping fields.

This method is more difficult to implement than the previous one. However,
since only one resource is stored in each square, it needs less memory space. In
conclusion, it seems to be a very good trade-off between memory requirements
and execution time. Nevertheless, it seems to be very difficult to find an algorithm
which updates the resource frontiers when resource potentials evolve.

4 Parallelisation Methods

This section deals with parallelisation methods which can be applied to the
sequential algorithms described above. Some of the combinations between the
parallelisation methods and the sequential algorithms are possible without any
modification, others are inefficient, while others are not possible. Their mixing
is presented in Table 1 and will be detailed below.

Table 1. Mixing between the parallelisation methods and the sequential ones.

Parallelisation\Sequential method|Recursive| Iterative | Distance-all |Distance-most

Fixed domain partitioning ok ok first stage only ok
Changing domain partitioning ok ok first stage only ok
Processor-private environments ok inefficient| inefficient ok
Mutex-based ok ok no ok

4.1 Fixed Domain Decomposition

This is the classical domain decomposition parallelisation [4]. The basic principle
is that each processor is affected to a different domain. The number of domains
is equal to the number of processors, and each processor is bound to a distinct
domain in our environment. We have used a horizontal decomposition, where
each domain has the same number of lines? of environment.

The complete propagation is done in three stages (Figure 3). The first stage
propagates the potential of all the resources in each domain separately, setting
the correct potential on each square of its domain. This can be done with any
of the sequential methods, according to Table 1. This stage of propagation is
sufficient when the sequential method based on storing all the influent resources
is used.

The second stage copies the frontiers to a memory accessed by other pro-
cessors, called buffer in the following. No synchronisation point is needed, since
there is no sharing conflict: each processor reads and writes its own data (domain
and buffers).

The third stage repropagates in each domain separately the potentials of all
the frontiers. Four points need to be discussed in this stage, presented in the

2 Or differing by 1 line if the number of lines is not divisible by the number of domains.

Resources propagation Frontiers saving Frontiers propagation

Fig. 3. For each processor, the propagation is completely done in three stages: resources
propagation, frontiers saving (only 2 frontiers in this figure), and frontiers repropaga-
tion, the last two stages being repeated several times.

following. Firstly, a synchronisation point is mandatory to cope with the sharing
of the buffers.

The second point involves the main part of this stage: the repropagation of
the frontiers. This is similar to the first stage (propagation), except that the
propagation starts from all the points of the domain frontiers (and not from
resources, as some of the propagation methods).

Thirdly, the second and the third stages are repeatedly executed until no
change of potential is done on frontiers during the third stage. At this moment,
the propagation is entirely done in all the environment.

Figure 4 (left case) presents an example where two repropagations are nec-
essary. During propagation, the obstacles prevent the square X to receive the
potential from resource R. A first repropagation allows intermediate squares to
receive correct potential values, and only the second repropagation can put the
right potential into square X. The other two examples in Figure 4 present cases
when a domain is interposed between resource R and square X.

— frontier

Fig. 4. Examples where two repropagations are needed for square X to receive the
correct potential value from resource R (suppose the only resource influencing X is R).

The fourth point involves the number of synchronisations needed during this
method. Since each buffer is read by a neighbour processor at the middle of the
third stage, and written afterwards by its own processor (in the second stage),
another synchronisation point seems to be needed. Nevertheless, the double-
buffer technique avoids the use of a second synchronisation:

write own frontiers
i = 0 {the variable i is private to each processor}
repeat
write own buffers]i]
synchronisation point
read neighbours’ buffersi|
i =1 -1 {choose the other set of buffers}
write own frontiers
until no change of potential on any square of the frontiers

4.2 Changing Domain Decomposition

The fixed domain decomposition method needs several repropagations to com-
plete the potential spreading in the environment. The purpose of the changing
domain decomposition is to reduce the number of repropagations.

The distinctive feature of this method is that the domain decomposition
changes when the frontiers are repropagated. Figure 5 presents such a case,
with 4 processors used by the propagation and 3 processors used during the
repropagation. The new frontiers are now located at some distance from the old
ones. If the distance between the old and the new frontiers is larger than the
potential field length of any resource, the potentials of the new domain frontiers
do not change, thus no synchronisation point is necessary.

P4

Fig. 5. The repropagation changes the decomposition in order to move off the frontiers.

A disadvantage of this method is that the cache is not well exploited. Since
a lot of squares are processed by different processors during propagation and
repropagation, cache conflicts appear [5], degrading the performance.

4.3 Processor-Private Environments

As a first step (Figure 6), each processor processes a part of the resources, and
updates its potential field on a whole processor-private copy of the environment.
After that, as the second step, the environment is updated using the processor-
private copies of the environment: each square of the environment receives a
potential equal to the maximum potential of the corresponding squares of the
processor-private environments. This solution has higher memory requirements

(for the private environments) and leads to a lot of cache misses for the second
step, since each processor reads private environments.

P1 P2 P3 E

private global
environments environment

Fig. 6. Example of data decomposition for the wave propagation algorithm (3 proces-
Sors).

4.4 Mutex-Based Parallelisation

In this method, each processor propagates the potential of a part of the resources
(data decomposition). To solve the concurrent access to squares influenced by
several resources, a mutex (variable used to ensure a mutual ezclusion region)
per square or per group of squares is used. This leads to numerous and expensive
mutex operations.

5 Performance

We have implemented two parallelisation methods: fixed domain partitioning,
and processor-private environments. Four sequential implementations were taken
into account: recursive with depth-first and breadth-first propagation, and iter-
ative with fixed and variable potential. As shown in Table 1, it is inefficient to
use processor-private environment with iterative methods. Therefore, we chose
to use the recursive breadth-first method for the two parallelisation methods
above.

The programming language used was the C language. The SMP machine was
a Workgroup 450 Sun server® with 4 processors running Linux, the compiler
used was gec (GNU Compiler Collection), and the parallel library was Posix
threads [6], linux threads? implementation. The DSM [7] machine was an Origin
2000 [3] with 64 processors running Irix, the compiler used was its native one,
MIPSPro, with Irix native multi-threading library.

3 http://wuw.sun.com/servers/workgroup/450
4 http://pauillac.inria.fr/~xleroy/linuxthreads

For these tests, an environment with 512x512 squares was used, contain-
ing 10% obstacles. The number of resources was 1% of the squares, and their
potential was 16.

For each test, four executions were done, and the execution time of the slowest
processor in each execution was kept. The average time among these was taken
into account for experimentation results. The execution time of the propagation
part in sequential is 350ms for DSM machine, and 650ms for SMP machine.
The speed-ups are presented in Figures 7 and 8 We can see that the speed-
ups on both machines are similar. Also, for the given parameters of simulation,
the fixed domain partitioning gives better performance than processor-private
environments. The reason can be the cache misses which appear in the latter
method.

:

Frontier exchange —+—
Private environments -
35

25

Speed-up

1 2 3 4
Number of processors

Fig. 7. The speed-up on an SMP machine.

6 Conclusions

This article has introduced four parallelisation and six sequential algorithms of
the wave propagation model. We have experimented two parallelisation algo-
rithms, using an efficient and compatible sequential algorithm for the processing
of their sequential part. We have obtained good speed-ups up to four processors
on both SMP and DSM architectures: speed-up greater than 3 on 4 processors.
But performance decreases using more processors. Therefore, our future work
will be guided to the following directions:

— Optimising the implementations, such as reducing useless cache misses.

— Implementing and evaluating algorithms with higher memory requirements,
such as the method based on distance-storing of all influent resources.

— Implementing and evaluating other parallelisation methods.

4.5

Frontie e ———
Private environments ——

35

25

Speed-up

15}/

1 2 3 4 8 16
Number of processors

Fig. 8. The speed-up on a DSM machine.

But an original and promising direction seems to be the tolerance of minor

errors in the potential propagation, which would decrease the execution times
without affecting agent performance.

Acknowledgements

Support for this research is provided in part by a grant from Région Lorraine
(France), and access and support to Origin 2000 supercomputer are provided by
Charles Hermite Centre (France).

References

1

2.

. L. Bouton. ParMASS : un simulateur de systémes multi-agents paralléle. Master’s
thesis, Université de Nancy-I, Supélec, LORIA, June 1998.

J. Ferber. Les systémes multi-agents. Vers une intelligence collective. InterEditions,
1995.

J. Fier. Performance tuning optimization for Origin2000 and Onyx. Avail-
able at http://techpubs.sgi.com/library/manuals/3000/007-3511-001/html/
02000Tuning.0.html.

I. Foster. Designing and Building Parallel Programs. Addison-Wesley Publishing
Company, 1995.

. M. D. Hill and J. R. Larus. Cache considerations for multiprocessor programers.
Communications of the ACM, 33(8):97-102, Aug. 1990.

B. Nichols, D. Buttlar, and J. P. Farrel. Pthreads Programming. O’Reilly & Asso-
ciates, Sept. 1996.

J. Proti¢, M. Tomagevi¢, and V. Milutinovi¢. Distributed shared memory: Concepts
and systems. IEEE Parallel & Distributed Technology, 4(2):63-79, Summer 1996.
G. M. Werner and M. G. Dyer. BioLand: A massively parallel simulation envi-
ronment for evolving distributed forms of intelligent behavior. In H. Kitano and
J. A. Hendler, editors, Massively Parallel Artificial Intelligence, pages 316-349. MIT
Press, 1994.

