EcnLD, ECN Loss Differentiation to optimize the performance of transport protocols on wireless networks

Wassim Ramadan, Eugen Dedu and Julien Bouregois

Laboratoire d'Informatique de l'Université de Franche-Comté

Workshop on Mobile Computing and Networking Technologies 14 October 2009

Wassim Ramadan, Eugen Dedu and Julien Bouregois

Introduction Loss differentiation

Performance measurements

Objective Why DCCF

Outline

Wassim Ramadan, Eugen Dedu and Julien Bouregois

EcnLD, ECN Loss Differentiation Method

<mark>Objective</mark> Why DCCP

Objective

- Improving performance of transport protocols over wireless networks
- Design a new transport protocol suitable for video streaming in wireless networks

Objective Why DCCP

DCCP

- New protocol more adapted for multimedia transmissions :
 - Unreliable
 - Choice between two congestion controls
 - TFRC
 - TCP-like
 - Possibility to add its own congestion control
 - Mechanisms indicating to the sender with reliability which packets are received by the receiver
 - ECN utilization

Objective Why DCCF

DCCP congestion control

- Similar to the congestion control of TCP
- But :
 - Packet oriented
 - Selective Acknowledgement (SACK)
 - Well suited to multimedia data transport in environments where there are quick changes in network conditions

 $=(a^{2}-b^{2})^{2}$

Motivation ECN Methods based on ECN

Outline

- 1 Introduction
- 2 Loss differentiation
 - Motivation
 - ECN
 - Methods based on ECN
 - Performance measurements
 - Conclusion

 $=(a^2-b^2)^2$

<mark>Motivation</mark> ECN Methods based on ECN

Cause of losses

- Congestion
- Interference, mobility, etc (in Wi-Fi)

Why we need to make a distinction between the two causes ?

- Avoid bad reaction when there is a loss
- Not to reduce rate to avoid congestion while it is an interference
 - Therefore : maximize throughput transmitted

Classification methods : Three Categories

• IAT, ROTT or ECN (Our Approach EcnLD).

Motivation ECN Methods based on ECN

Cause of losses

- Congestion
- Interference, mobility, etc (in Wi-Fi)

Why we need to make a distinction between the two causes?

- Avoid bad reaction when there is a loss
- Not to reduce rate to avoid congestion while it is an interference
 - Therefore : maximize throughput transmitted

Classification methods : Three Categories

• IAT, ROTT or ECN (Our Approach EcnLD).

Motivation ECN Methods based on ECN

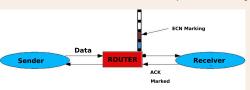
Cause of losses

- Congestion
- Interference, mobility, etc (in Wi-Fi)

Why we need to make a distinction between the two causes?

- Avoid bad reaction when there is a loss
- Not to reduce rate to avoid congestion while it is an interference
 - Therefore : maximize throughput transmitted

Classification methods : Three Categories


• IAT, ROTT or ECN (Our Approach EcnLD).

Motivation <mark>ECN</mark> Methods based on ECN

ECN (Explicit Congestion Notification)

ECN principle

- Notify the sender without losing packets
- A packet ECN compatible is marked on a router before its queue to becomes full, otherwise the packet is rejected

Motivation ECN Methods based on ECN

EcnLD vs TCP-Eaglet

TCP-Eaglet

- Algorithm : when there are one or more losses,
 - If (Slow Start) : halve transmission rate
 - Else (Congestion Avoidance) And ECN :
 - It is a congestion \Rightarrow halve transmission rate

• Problem : No differentiation in the slow start phase

EcnLD, Our approach

- Use RTT in addition to ECN
- Algorithm : when there are one or more losses,
 - If ECN OR (n > 0 AND RTT_{cur} > RTT_{ave} + RTT_{var}) Where : n is the number of losses returned in the acknowledgment
 - It is a congestion ⇒ halve transmission rate

Motivation ECN Methods based on ECN

EcnLD vs TCP-Eaglet

TCP-Eaglet

- Algorithm : when there are one or more losses,
 - If (Slow Start) : halve transmission rate
 - Else (Congestion Avoidance) And ECN :
 - It is a congestion \Rightarrow halve transmission rate

• Problem : No differentiation in the slow start phase

EcnLD, Our approach

- Use RTT in addition to ECN
- Algorithm : when there are one or more losses,
 - If ECN OR (n > 0 AND RTT_{cur} > RTT_{ave} + RTT_{var}) Where : n is the number of losses returned in the acknowledgment
 - It is a congestion \Rightarrow halve transmission rate

=(a²-b³)²

Simulation topology Simulation results

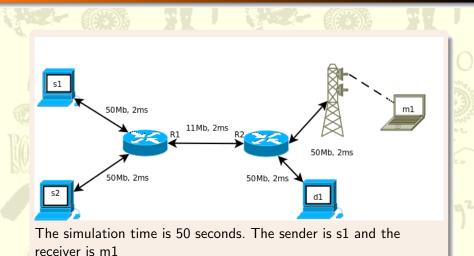
Outline

1 Introduction

4 Conclusion

- 2 Loss differentiation
 - Performance measurements
 Simulation topology
 Simulation results

Wassim Ramadan, Eugen Dedu and Julien Bouregois


EcnLD, ECN Loss Differentiation Method

10 / 20

 $=(a^2-b^2)^2$

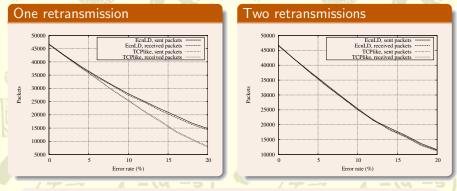
Simulation topology Simulation results

Network used to perform simulations

Wassim Ramadan, Eugen Dedu and Julien Bouregois

Simulation topology Simulation results

Description of simulation


1001100110011001

- Objective : compare the performance of EcnLD, TCPlike and TCP-Eaglet
- $\bullet\,$ Two scenarios with an wireless error rate varying from 0% to $20\%\,$
 - Without competition
 - In competition with TCP (between s2 and d1. From 1 to 20s And from 25 to 45s)
- One or two MAC retransmissions

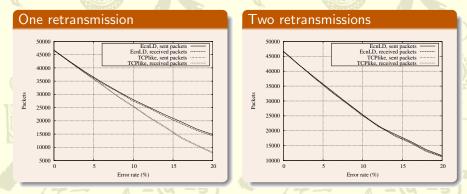
Simulation topology Simulation results

EcnLD vs TCPlike

First scenario : without competition

Results

Improved performance even with increased wireless error rate


Wassim Ramadan, Eugen Dedu and Julien Bouregois

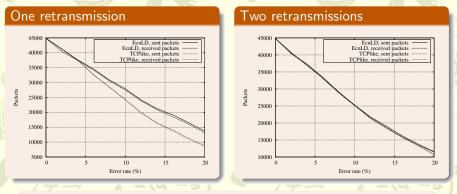
EcnLD, ECN Loss Differentiation Method

Simulation topology Simulation results

EcnLD vs TCPlike

First scenario : without competition

Results


Improved performance even with increased wireless error rate

Wassim Ramadan, Eugen Dedu and Julien Bouregois

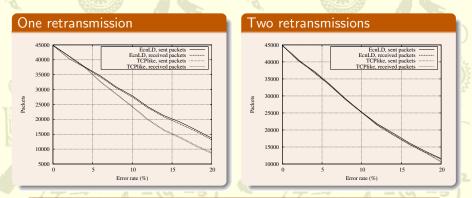
cnLD, ECN Loss Differentiation Method

Simulation topology Simulation results

EcnLD vs TCPlike Second senario : in competition with TCP

Results

Improving performance even in the presence of other traffic in the network


Wassim Ramadan, Eugen Dedu and Julien Bouregois

EcnLD, ECN Loss Differentiation Method

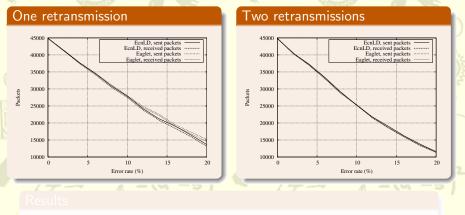
L4 / 20

Simulation topology Simulation results

EcnLD vs TCPlike Second senario : in competition with TCP

Results

Improving performance even in the presence of other traffic in the network


Wassim Ramadan, Eugen Dedu and Julien Bouregois

cnLD, ECN Loss Differentiation Method

Simulation topology Simulation results

EcnLD vs TCP-Eaglet

First senario : in competition on a wireless network of 11Mb/s

Performances are nearly equal

Wassim Ramadan, Eugen Dedu and Julien Bouregois

EcnLD, ECN Loss Differentiation Method

.5 / 20

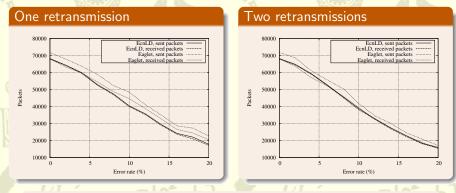
Simulation topology Simulation results

EcnLD vs TCP-Eaglet

First senario : in competition on a wireless network of 11Mb/s

One retransmission Two retransmissions 45000 45000 EcnLD, sent packets EcnLD, sent packets EcnLD, received packets EcnLD, received packets ------40000 Eaglet, sent packets 40000 Eaglet, sent packets Eaglet received packets Eaglet received packets 35000 35000 30000 30000 Packets Packets 25000 25000 20000 20000 15000 15000 10000 10000 5 15 5 15 10 20 10 20 Error rate (%) Error rate (%)

Results


Performances are nearly equal

Wassim Ramadan, Eugen Dedu and Julien Bouregois

Simulation topology Simulation results

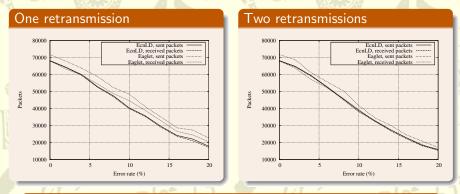
EcnLD vs TCP-Eaglet

Second senario : in competition on a wireless network de 54Mb/s

Results

EcnLD has a high ratio of received/sent packets

TCP-Eaglet has a higher throughput but losses a lot of packets on the network


Wassim Ramadan, Eugen Dedu and Julien Bouregois

cnLD, ECN Loss Differentiation Method

Simulation topology Simulation results

EcnLD vs TCP-Eaglet

Second senario : in competition on a wireless network de 54Mb/s

Results

EcnLD has a high ratio of received/sent packets

TCP-Eaglet has a higher throughput but losses a lot of packets on the network

Wassim Ramadan, Eugen Dedu and Julien Bouregois

cnLD, ECN Loss Differentiation Method

.6 / 20

Simulation topology Simulation results

EcnLD vs TCP-Eaglet : Loss classification percentage

One retr. 11Mb/s	0%	4%	8%	12%	16%	20%	Avg
EcnLD	100%	79%	68%	68%	67%	69%	72%
Eaglet	100%	84%	86%	90%	89%	88%	86%
Two retr.	0%	4%	8%	12%	16%	20%	Avg
EcnLD	100%	76%	63%	51%	72%	81%	<mark>73</mark> %

8% One retr. 54Mb/s 0% 4% 12% 16% 20% Avg EcnLD 40% 53% 64% 75% 73% 72% 64% Eaglet 4% 4% 10% 26% 33% 41% 18% 8% 16% 20% Two retr. 0% 4% 12% Avg EcnLD 41% 34% 25% 66% 48% 53% 43% Eaglet 3% 2% 2% 9% 10% 16% 6%

Results

EcnLD has a higher loss classification rate in most cases

TCP-Eaglet bad classification results in a higer throughput but less network friendly

Wassim Ramadan, Eugen Dedu and Julien Bouregois

cnLD, ECN Loss Differentiation Method

Simulation topology Simulation results

EcnLD vs TCP-Eaglet : Loss classification percentage

One retr. 11Mb/s	0%	4%	8%	12%	16%	20%	Avg
EcnLD	100%	79%	68%	68%	67%	69%	72%
Eaglet	100%	84%	86%	90%	89%	88%	86%
Two retr.	0%	4%	8%	12%	16%	20%	Avg
EcnLD	100%	76%	63%	51%	72%	81%	73%
Eaglet	100%	50%	50%	79%	51%	54%	64%

One retr. 54Mb/s 0% 4% 8% 12% 16% 20% Avg EcnLD 40% 53% 64% 75% 73% 72% 64% Eaglet 4% 4% 10% 26% 33% 41% 18% 8% 16% 20% Two retr 0% 4% 12% Avg EcnLD 34% 25% 66% 48% 53% 43% 41% Eaglet 3% 2% 2% 9% 10% 16% 6%

Results

EcnLD has a higher loss classification rate in most cases

TCP-Eaglet bad classification results in a higer throughput but less network friendly

Wassim Ramadan, Eugen Dedu and Julien Bouregois

cnLD, ECN Loss Differentiation Method

Conclusion and perspectives

Outline

2 Loss differentiation

3 Performance measurements

Conclusion

Conclusion and perspectives

Wassim Ramadan, Eugen Dedu and Julien Bouregois

EcnLD, ECN Loss Differentiation Method

18 / 20

= (a² - 6³)²

Conclusion and perspectives

Conclusion and perspectives

Conclusion

- EcnLD has a very high rate of received packets, which designed to improve performance on wireless networks
- EcnLD carries a very high packets reception rate, which makes it suitable to streaming multimedia

Perspectives

• Improving our contribution in wireless networks to design a new multi-radio protocol

Conclusion and perspectives

Conclusion and perspectives

Conclusion

- EcnLD has a very high rate of received packets, which designed to improve performance on wireless networks
- EcnLD carries a very high packets reception rate, which makes it suitable to streaming multimedia

Perspectives

 Improving our contribution in wireless networks to design a new multi-radio protocol

=(a2-5)2

Thank you for your attention

Questions?

Wassim Ramadan, Eugen Dedu and Julien Bouregois

EcnLD, ECN Loss Differentiation Method

20 / 20

 $=(a^{2}-b^{2})^{2}$