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Introduction

This document presents the research activities I have been conducting since september 2003, when I
was hired as assistant professor (mâıtre de conférences) and started to work in a new field, computer
networks (previously I had worked on parallelism and multi-agent systems in other places in France).
These activities have taken place in the same laboratory, namely Institut FEMTO-ST, DISC computer
science department, previously named LIFC laboratory, and in the same place, in Montbéliard, France.

During this period, I have co-supervised several Ph.D. students: three graduated, one not gradu-
ated, and two ongoing students. I also supervised three master’s thesis.

The document presents only the work I have been directly involved of, i.e. either by myself or by
Ph.D. students I co-supervised.

This work has been published in 7 international journals and 16 international conferences with
peer reviewing. Most of them are regarded as “referenced” publications (i.e. high quality) in our
laboratory. The articles are available on my Web page1.

Manuscript organisation and personal contributions

My research work is in the domain of network communication. If I look back at all my published work
concerned by this manuscript, I would divide it in four fields. In this document, each field is presented
in one chapter. Chapters are presented in chronological order of my interest in them, and sections
inside are presented in chronological order too. Even if sometimes sections could also be presented in
other order, the chronological order is perfectly appropriate.

Ideas presented in the first chapter, congestion control in networks, are general and very varied, and
each section presents a completely different idea; as such, the first chapter is the biggest in number
of pages. It presents some ideas to increase data transmission speed on wireless networks and on
networks in general, and also an analysis of congestion control in sensor networks.

The second chapter, adaptive video streaming, focuses on video transmission, and presents three
main independent ideas: a video adaptation method, a method to reduce oscillations in quality, and
an analysis of video adaptation methods found in the literature.

The third chapter presents the work done inside a project funded by the national agency of research
(ANR) on MEMS communications. In this chapter, each section depends on previous ones, and each
section can be considered as a next step in the work. They present a framework to discover the best
differentiation criteria, a method to find out the best size of the platform, implementation on the real
platform, an enhanced differentiation method and a tree-based storage of the knowledge.

The fourth chapter is the shortest chapter and presents very recent and ongoing research on
nanonetwork communications. It presents one published article, on nanonetwork simulation, and
another one under review, presenting a method to reduce the energy when transmitting data.

Except perhaps the first part of the third chapter (which is particular to a platform), the idea
which crosses all the work is optimisation or improvement, hence the title of the manuscript. I have
not discovered new materials, I have not created new devices; what I have tried is to optimise their use.
For example, one can still be astonished that in our ultra fast network era seeing a simple Web page
still takes a few seconds; my proposition in this case was to prioritise flows so that short flows such
as HTTP have higher priority in the network [58]. Another example is that devices in nanonetworks
use energy to transmit 1 bits, and no energy to transmit 0 bits; my proposition was to encode data
transmitted so that it contain fewer bits 1 [203].

1http://eugen.dedu.free.fr
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Chapter 1

Congestion control in networks

1.1 Introduction

When I joined the current laboratory as assistant professor in 2003, the research team worked on
computer networks and on video transmission. The first field I worked on was naturally computer
networks. My colleagues worked at network and transport levels. After some discussion with my team
leader (François Spies), I decided to focus on transport level.

In the TCP/IP networking model, the transport level is on top of network layer, and below
application layer. The network layer takes care at transmitting one packet from source to destination.
Each packet has two IP addresses: source and destination. Network layer uses destination IP address
to route the packet from machine to machine up to the correct destination.

In a network, making a packet reach destination is not sufficient. IP is a best-effort protocol, which
means that it does its best to make packet reach to destination, but does not provide any guarantee
on its arrival. Additionally, packets can be duplicated and when sending several packets, they can
arrive in disorder. More importantly, when a source needs to send a big quantity of data, such as
an e-mail of 1 MB or a Web page of 100 kB, it must cut the data in packets of about 1500 bytes
and send each packet independently. The limit of 1500 bytes is given by the technology of the link
between machines (the so-called MTU, Maximum Transmission Unit). The role of congestion control
at the sender is to provide the timing of sending the packets. Sender should not send them too slowly,
for example 1 packet/second, because the network would be underutilised. Sender must not send
them too fast either, for example all the packets as fast as possible, because network could very likely
become congestioned, make packets be lost and prevent other communications to take place.

Research work on transport level in general networks has been focusing mainly on congestion
control. The main protocols used at transport level were TCP and UDP. TCP has congestion control,
whereas UDP does not. As such, TCP is much more used than UDP. During that time (around year
2005), a new protocol, DCCP, which has congestion control too, was being standardised by IETF (the
group managing the protocols used in Internet). My research direction turned on congestion control
in general, and simulations/experiments on TCP and the then-new protocol DCCP.

Congestion control is performed by data sender, but involves the network also. The machines
inside the network which take care of routing packets are the routers. In brief, routers receive packets
on their interfaces, look at their destination, and route them nearer destination to a neighbouring
router through another interface. If a router receives more packets than it can handle or can store
in its memory, then it drops some packet, so the packet becomes lost. Several mechanisms exist on
deciding when and which packet the router should drop. Once the packet is lost, the packet sender
usually discovers the lost packet and retransmits it.

My work in this field resulted in various ideas on congestion control:

• Various ideas on generic congestion control on computer and sensor networks: optimise packet
loss in routers [122], prioritise short flows (e.g. Web flows) on routers [58], analyse congestion
control influence in sensor networks [54].

• Optimisation on wireless networks: remove MAC retransmission influence on wireless net-
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6 CHAPTER 1. CONGESTION CONTROL IN NETWORKS

works [57] (which will not be presented in this document), differentiate between wired and
wireless packet losses, initially proposed in [158] and improved and with more experiments in
[163].

1.2 Optimisation of packet loss in routers

The network quality of service (QoS) and the congestion control of the transport protocol are important
parameters for the performance of a network data transfer. To this end, routers use various queue
policies for packet dispatching, and all of them must deal with packet drop. This section proposes a
new algorithm for packet drop in routers. Given that a packet drop wastes all the network resources
it has already used, we propose a new policy which favours packets with higher distance from source.
This policy, DDRED (for Distance-Dependent RED), consists in dropping packets having consumed
fewer physical resources and thus coming from sources nearer to the congested router. By dropping the
packets from this source, retransmission becomes faster. Simulations show that long flows are indeed
favoured compared to short flows, and lead to higher overall resource utilisation without sacrificing
flow fairness.

1.2.1 Introduction

During data transmission, routers may become congested. In such cases, some packets must be dropped
from the input queue(s). Several policies exist in order to decide which packets will be rejected. Two
very common such policies are DropTail and RED [78].

In DropTail, a new packet is rejected if and only if the queue is full. It is a very fast decision and
hence it is suited to backbone routers.

RED (Random Early Detection) [78] is an active queue management currently implemented in
many routers. Using RED leads to better sharing among the various flows passing through the router.
RED is also used for congestion management through negative feedback to the sender, which is done
by dropping packets before queue overflows in order to signal imminent congestion. If utilization of
ECN is enabled in the router and flow is ECN capable, RED marks these packets instead of dropping
them. To do it, RED maintains a few values: queue length ql, queue average qave, minimum queue
threshold qth min and maximum queue threshold qth max.

• If qave < qth min, all packets pass without being dropped or marked.

• If qave is between qth min and qth max, packets are marked (if ECN) or dropped (if not) with a
probability which increases linearly while qave increases.

• Finally, when qave > qth max all packets are dropped.

Packet management is performed by queue policies in routers, such as the two above. Our propo-
sition is that when the policy specifies that the incoming packet should be dropped, drop another
packet instead of the incoming one. DDRED is the implementation of our proposition in RED policy,
but it can be integrated into other policies, such as DropTail.

1.2.2 Related work

There are several techniques to achieve higher overall resource utilisation and/or to adapt the appli-
cation requirements to the dynamic network conditions. Some techniques act on the host side, such as
the congestion control of TCP [152], others on the router side. In the following we focus on techniques
on the router side.

Furthermore, some techniques are content-based [37]. For example, in an MPEG video streaming
flow, routers recognize the type of frames (I, P or B) and try to prevent I frame dropping (which are
critical, since P and B depend on I).

Several techniques which are not content-based exist. Some of them use various scheduling algo-
rithms, such as FQ (Fair Queue) and WRR [175] (Weighted Round Robin).
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Others use various queue management policies, such as RED and its derivatives. Cisco’s WRED [46]
(Weighted RED) includes IP preference in RED by providing separate thresholds and weights for differ-
ent IP addresses. DSRED [205] (Double Slope RED) improves the performance of RED by dynamically
changing the slope of the RED probability curve as a function of the congestion level.

In [92] several queue sizes with different parameters are used when the queue is scarcely filled,
leading to a faster RED processing. MRED (Modified RED) [3] optimises RED for bursty traffic.
Both use NS2 to validate their proposition.

In best-effort networks, equipments do their best to deliver packets, but there is no guarantee that
they will arrive at destination, neither can one be sure of the time they will take to arrive. DiffServ [22]
is a method which tries to guarantee a QoS on such networks, by dividing traffic into groups with
different priorities on routers.

AECN [207] (Adaptive ECN) adds to the TCP header a field containing information about the
RTT (Round Trip Time) of a flow. The field is set by senders and read by routers. Routers have a set
of RTT ranges and corresponding flow sub-queues. Each packet is put in the appropriate sub-queue,
based on its RTT. Unfortunately, the RTT gives the return time and is independent of the location of
the packet in its trip, while in DDRED the distance gives the number of routers (resources) involved
up to the router which would drop the packet.

1.2.3 Adaptive priority mechanism

In a point of the network, we define the distance dr of a packet as being the number of routers between
this point and the source of the packet. If a packet is to be dropped, it is preferable to drop a packet
with a small dr value and to keep the packet with a large dr value. We use this distance to develop
new types of queue management policies.

Principle

Bearing this in mind, we can use the TTL field of 8 bits of the IP header [151]. The TTL is the
lifespan of a packet in a network, a kind of expiry date. Each time the packet enters a router, its TTL
is decremented, and when it reaches the critical value of zero, the packet is destroyed, even if it has
not yet reached its destination. This field is initialised at wish by senders [151], and its initial value
cannot be known by routers. Therefore, we need our own IP fields, implemented as IP options for
example. We present two methods to implement these fields.

The first method is to take into account the distance dr. This can be done using one additional
field in the IP header: the initial TTL (TTLi). TTLi is set in each packet with the initial value of
the classical TTL field of the source machine. By computing the difference between this new field and
the TTL read on the router, we can determine that the distance dr = TTLi − TTL covered by the
packet.

The second method is to take into account the percentage of the route covered. It involves two
fields: TTLi and TTLf , the latter (final TTL) being set with the TTL read on the destination of the
previous packet.

As the second method requires more resources (CPU time and one more byte in the IP header),
we choose here the first method in our simulations.

Implementation

The router uses the covered distance to choose the packet to be dropped. We implement our mechanism
in two common queue management policies used in routers:

In DropTail policy the dr value of an arriving packet and of the last N packets of the queue can
be compared. The one whose distance is smaller, therefore pertaining to the flow having the nearer
source, is rejected, whereas the other is put at the tail of the queue.

In RED policy the decision of packet drop (leading the router to a congestion state) is based on
a probability computing as presented in previous section. We do not change the formula but only
the packet to which this probability applies. When the probability requires dropping (or marking in
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ECN case) the packet, the router searches the queue for the nearest packet (smallest dr) and drops it
instead of the incoming packet.

1.2.4 Simulation results

For our simulations, we use Network Simulator [140] version 2.29. We create a patch which changes the
drop policy in the RED algorithm as presented before. For more reliability, each case study (named
Srn for Simulation run n) has been simulated with different initial random seeds (from 0 to 10), giving
different scenarios. Each scenario is simulated twice with the same initial conditions (transfer size and
transfer starting time): in the first one, all routers implement the RED algorithm and in the second
one the DDRED algorithm. All the routers use either the RED policy or the DDRED one and we
compare the results based on packet losses, which give information about network resource utilisation.

We first simulate a simple network, afterwards a complex network, and finally we discuss the
fairness of the mechanism proposed.

Simple network The network is shown in figure 1.1. All the links between workstations and routers
and between routers have a bandwidth of 10 Mbits/s. 100 FTP transfers, based on TCP New Reno,
are created in a period of 60 seconds and the simulation stops when all the transfers are completed.
The source and the destination of each of these flows are randomly selected among the workstations.
The size of the data transferred is randomly selected (but reproducible) between 100 kB and 6 MB.

Figure 1.2 presents the number of lost packets during the entire simulation. The average number of
lost packets is LRED = 2724 and LDDRED = 3160. It shows that there are more losses with DDRED.
Having more losses is not a bad thing. What is important is not that a packet is lost but that it has
consumed resources (router processors and bandwidth), for example a packet lost at the 10th router
compared to 3 packets lost at the second router.

To measure the resources consumed, for each distance covered dr the number of packets lost Ld is
totalled and then the number of losses is weighted by their respective covered distance:

S =
drmax∑
dr=1

(dr × Ld) (1.1)
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Figure 1.3: Bus topology, loss distribution for a simulation run (Sr6).
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Figure 1.4: Bus topology, number of losses weighted by their covered distance.

Figure 1.3 shows an example of loss distribution Ld(d) for one of the scenarios. As seen, DDRED
lost packets are drawn nearer to the source of the transfer. Figure 1.4 shows the sum for each simulation
run Srn. We thus save space in the router queue or “slots” (a slot is the space of one packet with
average size in the queue). The average consumed slot number is reduced from SRED = 5418 to
SDDRED = 3259.

Simulations also show that the sum of transmission times of all the flows is 2.5% smaller with
DDRED than RED, which means that flows arrive faster to destination.

Complex network In order to have a more realistic scenario, a more complex topology, with a
shape of flower, is used in the next simulations. According to a small study of the xDSL backbone of
a Internet provider1, most of these networks are built around a central core where several loops are
connected. These loops are composed of a small number of routers. The aim of the closed loop is to
have a fault tolerance.

We considered a flower with five loops with eight routers on each of them. As in the bus network,
only one workstation is connected to a router and connections have the same conditions and parameters
(sizes and times of transfers). In this simulation 500 connections are initialized in the same first minute
and the simulation ends at the end of the last transmission, as in the first one.

Here only the results which differ from the previous simulation are presented. Figure 1.6 presents
the number of packets lost. Contrary to the bus network, fewer packets are lost, approximately 22%
(LRED = 48083 and LDDRED = 37402).

1http://support.free.fr/reseau/province.png, not available anymore as of August 2008; however https://www.

renater.fr/IMG/png/Carte_2014.png is similar, with several centres instead of only one.
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Figure 1.5: Backbone of the flower network.
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Figure 1.6: Flower topology, number of lost packets.
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Figure 1.7: “Flower” topology, number of losses weighted by their covered distance (slot saving).
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In figure 1.7, the number of used “slots” with these queue policies is on average SRED = 152595
and SDDRED = 78683 packets. With DDRED, the saved “slots”, therefore available for other flows,
can grow up to 50% compared to RED.

The sum of the transfer times is on average 6% smaller. Not all the transfers are faster, but on
average transfers end sooner.

Fairness discussion To compare the fairness of DDRED to RED, the ratio of bandwidth between
the two flows is analysed and simulated. Figure 1.8 shows the results of one simulation. In this figure,
the nearer to 1 the ratio is, the fairer the algorithm is. (As already known, the ratio between the
bandwidths of two TCP flows is not exactly 1, but depends on their RTT, see for example [134].) The
figure shows that for a difference of latency inferior to 10ms (i.e. difference of RTT inferior to 20ms),
RED has a ratio nearer to 1, hence RED is fairer. However, between 10ms and 100ms, DDRED has
a ratio nearer to 1, hence DDRED is fairer. When the latency is greater than 50ms, the fairness of
both strategies is the similar. As a conclusion, DDRED works better than RED for networks where
latencies vary much, which is the case for Internet.

1.2.5 Conclusions

During congestion, routers drop packets, no matter the queue policy. When a packet is dropped, all
the network resources it has consumed are wasted. This section proposed a new algorithm of packet
drop on router, which takes into account the path covered by a packet up to this router. Packets far
from their sources are favoured compared to packets near their sources. Simulations show that packets
from long path flows are favoured, and network resources are less used without sacrificing the TCP
fairness.
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1.3 Prioritisation of short flows on routers

This section presents a study on the benefits of favouring the transfer of packets of a TCP flow over
a best-effort network such as IP. Specifically, we aim at studying whether we could improve the pace
of short data request, such as HTTP request, by giving a high priority to TCP packets that are
not previously enqueued inside a core router. Following the idea that long-lived TCP flows greatly
increase the routing queue delay, the motivation of this work is to minimise the impact in terms of
delay, introduced by long-lived TCP flows over short TCP flows. Thus, this forwarding scheme avoids
to delay packets that do not belong to a flow already enqueued inside a router in order to avoid delay
penalty to short flow. We define metrics to study the behaviour of such forwarding scheme and run
several experiments over a complex and realistic topology. The results obtained present interesting
and unexpected property of this forwarding scheme where not only short TCP flows take benefit of
such routing mechanism.

1.3.1 Introduction

Favouring the TCP connection establishment packets or any others packets belonging to a TCP
flow inside a core network is not a novel idea. James Kurose, in his famous text book Computer
Networking, suggests that it would be useful to protect from losses TCP packets with a low time-to-
live value in order to prevent retransmission of packets that have already done a long travel inside a
core network. As another example and in the context of QoS networks, Marco Mellia et Al. [137] have
proposed to protect from loss some key identified packets of a TCP connection in order to increase the
TCP throughput of a flow over an AF DiffServ class. In this study, we observe that TCP performance
suffers significantly in the presence of bursty, non-adaptive cross-traffic or when it operates in the small
window regime, i.e. when the congestion window is small. The main argument is that bursty losses, or
losses during the small window regime, may cause retransmission timeouts (RTOs) which will result
in TCP entering the slowstart phase. As a possible solution, we propose qualitative enhancements to
protect against loss: the first several packets of the flow in order to allow TCP to safely exit the initial
small window regime; several packets after an RTO occurs to make sure that the retransmitted packet
is delivered with high probability and that TCP sender exits the small window regime; several packets
after receiving three duplicate acknowledgement packets in order to protect the retransmission. In this
study, we are focused on the TCP throughput guarantee which is a primary goal of the DiffServ/AF
class [22, 88]. This motivates to protect against losses, packets that strongly impact on the average
TCP throughput. In an obvious manner, we cannot guarantee a minimum throughput over a best-
effort network. However, we propose to study the prioritisation of certain TCP packets in order to
investigate whether we could minimise the transfer delay of short TCP flows without impacting on
the long lived connections. In this paper, we study how to exploit router functionality to improve the
performance of TCP flows in a best-effort network by giving a higher priority to the first packets of a
TCP flow inside a router queue if no others packets belonging to the same flow are already en-queued.
One of the main goals of this proposal, called FavourTail, is to investigate and understand the benefits
of using a prioritisation forwarding scheme inside a core network. Intuitively, we expect to decrease
the transfer delay of small TCP connections but surprisingly, we show that this routing behaviour
does not only improve the performance of TCP flows and allows to improve the overall performance
in terms of transfer delay when slight congestion occurs. We present the potential benefit of using
such solution and analyse the benefit of our scheme over a realistic and complex network topology.
We show that the proposed scheme can improve the transfer delay of TCP flows up to 25%.

1.3.2 Related work

Many papers present router-based methods to optimise flow transfers. This section presents the most
related to our FavourTail proposal.

In [156], routers memorise the number of bytes of each flow passing through them. Upon reception
of a packet, the number of bytes of its flow is updated and it is added to the queue so that the packets
in the queue be always sorted based on the number of bytes traversed. The consequence is that flows
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are given higher priority when they are at the beginning of connection. The drawbacks are that routers
have flow states, heavy computations are involved (sorting the queue), and the number of the packet
in the flow must be known.

[9] removes this final condition by computing the number of the packet from on the TCP sequence
number. For that, it introduces a constraint: the starting sequence number must have the last N bits
(N = 22 proposed in the article) equal to 0. The drawbacks are that TCP senders have to be
modified, the sequence number is more vulnerable to guessing attack, and the deployment is difficult:
short flows on a standard TCP source will be penalised, since the sequence number of the first packets
are misinterpreted by the router as being the Nth packets. Two queues are used and a threshold.
Upon reception of a packet, if the number of bytes of that flow is inferior to threshold, it is put in the
priority queue, otherwise in the normal queue. The priority queue is FIFO, while the normal one is
sorted by the number of packets traversed. The normal queue is used only when the priority queue is
empty.

Another idea is presented in [42]. Only edge routers have flow states, even if not for ever. They
count the packets of each flow and set the DiffServ bits of each packet. Core routers use only the
DiffServ information. Edge routers mark packets as IN if the current number of packets is inferior to
a certain threshold, and OUT if they exceed this threshold.

1.3.3 Problem formulation and motivation

The purpose of storing packets at a router queue is to absorb temporarily burst of packets. The idea
we want to develop in this study is to prevent short data flows to be enqueued due to a burst induced
by long-lived traffics.

To solve this problem, a possible solution is to involve only the end points. Suppose a connection
which only needs to send 10 packets. If we assume the sender is aware of this small number of packets
to transmit, we could propose to let him decide to send them in burst. However, this violates the slow
start phase and the congestion control mechanisms principle. As a matter of fact, it results that a
mechanism to favour short flows must necessarily involve the routers.

Idea presentation Routers are mandatory to decide if a received packet is either rejected or marked
or simply enqueued. In the FIFO scheduling policy, the packet is inserted at the top of the queue.

Our packet scheduling proposal, called FavourTail, is the following. The enqueuing packet process
is changed. When a packet is enqueued, a check is made in the whole queue to seek another packet
from the same flow. If no other packet is found, it becomes a priority packet, otherwise it is added
as normally at the top of the queue. Priority packets are added at the beginning of the queue, right
after the last priority packet (if there are any). The packet reordering inside a flow is thus avoided.

This scheme is quite similar to a priority queuing scheduling mechanism [206].

FavourTail changes the packet scheduling policy; as such, it can be used with any other queue
management policy such as DropTail and RED. In the simulations below we choose DropTail.

Variants There are many variants of this idea which do not involve flow states on routers. Some of
possible variants are:

• Instead of a binary function (insert the packet in the priority queue or in the normal one), use
another function f(n,m) giving the level in the queue where the packet will be inserted, where
n is the number of packets of the same flow in the queue, and m is the total number of packets
in the queue. f might be linear, exponential, logarithmic and so on. For example, in classical
FIFO, f(n,m) = m, i.e. the packet is always added on top of the queue. (This is not the same
as Fair Queuing, where f depends on the number of packets of other flows too);

• Instead of having only two queues, it is possible to have several queues, for example one for
packets with 0 other packets from the same flow, another for packets with 1-2 packets, one for
3-5 packets and the least priority queue for all the other packets. However, this solution might
introduce an important overhead;
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• Act on dropped/marked packets too: when a packet is to be dropped and if it is a priority
packet, then choose the last normal packet to act on instead of it.

Dimensioning We are interested to know if FavourTail might have good results in realistic cases.
As an example, suppose a flow of 8Mb/s (equivalent to 1000 pkts/s with a 1000 bytes packet size).
Suppose also an RTT of 50ms. It results 50 pkts/RTT (1000 pkts/s * 50ms/RTT). If each direction
has half of them, then there are 25 data packets in flight. If there are 10 routers between source and
destination, then there are 2.5 pkts/router in average. We therefore consider that there are a few
routers where this flow is still prioritised. However, it is more consistent to consider the overall gain
obtained by the flow rather than the number of times this flow got a packet with a high priority.

Characteristics

• FavourTail does not only favour the beginning of connection but also flows with few packets in
flight, i.e. with small congestion window;

• There is no relation between the routers, i.e. a flow with ten packets in flight, one in each router,
is favoured, while another flow with only two packets in flight, both on the same router, is not
favoured. This is especially true in the TCP slow start phase: packets are generated in burst, so
the probability to have several packets of this flow in a router is higher. Evenly-spaced packet
sending, such as in TFRC, should be much more prioritised, because their packets are distributed
across all the routers;

• There are still several cases where a flow with a very small transmission time has the same trans-
mission time in both cases (DropTail and FavourTail): (1) it might have only one intermediate
router, so the chances to be in concurrence with other flows are smaller, (2) it might be be-
cause in FavourTail they are never high priority (it crosses routers which have only high priority
packets), (3) it might be because in DropTail the routers are empty (so it is like they would be
priority), (4) it might be because on the next router of the next router the prioritisation of the
packet does not change anything;

• For priority flows, the more routers are in the path, the greater is the gain in terms of transmission
time;

• In terms of security, sources cannot cheat by sending packets at a rate making them always
priority, because they cannot estimate how many priority packets are inside routers (a priority
packet may be put in the head if there is no other priority packet, but it may be put as number
10 is there are already 9 priority packets in the queue);

• FavourTail is NAT-compatible, if source port and destination port are used to identify flows (as
they are unique for NAT too);

• The deployment is in the interest of the person who deploys. Indeed, when a router uses
FavourTail, his own users are advantaged: clients receive faster Web pages, and servers reply
faster to their Internet clients;

• Starvation may occur for long flows in a router which receives only priority packets. In order to
remove this, the normal queue could be served from time to time even if the priority queue is
not empty; we will tackle this in a future work;

• A solution which acts on two bursty packets exactly like two spaced packets, i.e. which spaces the
bursty packets, would avoid TCP problem given below. We reserve this possible enhancement
in a future study.

FavourTail has been implemented in NS2 as an extension of the DropTail queue. The next sections
present the results.
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Figure 1.9: Topology of the simple network.

1.3.4 Simulation results

Simple network

We firstly evaluate FavourTail over the simple network topology given figure 1.9. The links are
configured as follows: both access links have a capacity set to 2Mb/s while the bottleneck link has a
1Mb/s capacity. All links have a transfer delay set to 10ms. Two FTP/TCP traffics are generated: the
first one, C1, from src1 to dest, and the second one, C2 (in the second simulation we use TFRC instead
of TCP), from src2 to dest. C1 starts at sec. 0 and ends at sec. 5. C2 starts at sec. 1 and generates
only 12 data packets. Obviously, at the beginning of the connection, a SYN packet is generated, and
FavourTail will give it a high priority. However, it is important to keep in mind that not only the
SYN packet will get a priority. The tests are made with both policies: DropTail and FavourTail.

Results For TCP, the time elapsed between the last packet sent and the first one for C2 is 0.53 for
DropTail and 0.43 for FavourTail. The total number of packets sent by C1 is 591 in both cases. No
packet is lost.

This is a positive result for the user in terms of transfer duration. Indeed, C1 is not penalised at the
end of the connection, while C2 finishes about 20% sooner. The reason is that the two first packets
of C2 are prioritised by the router. In fact, when arrived at the router, the first packet overtakes
13 slots, while the second one overtakes 14 slots. The difference in time for C2 (0.53− 0.43 = 10 ms)
corresponds to the processing time of packets by the router (13+14 = 27 packets), time gained by C2.

If C2 uses TFRC instead of TCP, the time elapsed between the last packet sent and the first one
for C2 is 0.54 for DropTail and 0.17 for FavourTail. The total number of packets sent by C1 is 591 in
both cases.

This is again a very positive results for the user. C1 is not penalised at the end of the connection,
while C2 transfer is about 3 times faster. In fact, 6 packets from C2 are prioritised, gaining each one
between 14 and 17 slots.

Discussion While the results with this network topology are positive, i.e. the small flow is indeed
favoured, the question is why not all its packets are prioritised.

The explanation is the following. TCP is a protocol which sends packets in burst. The first burst
contains one packet, so it is prioritised. The second burst, sent when the acknowledgement arrives,
contains two packets. The first packet is prioritised on the router, but the second one arrives before
the first one leaves the router (the link after the router, 10ms/1Mb, is slower than the link before the
router, 10ms/2Mb), hence it is not prioritised. As the queue contains many packets from the long
flow, this packet is still in the queue when the packets of the following burst arrive. In fact, because
the queue has many packets, none of the following packets are prioritised.

On the other hand, TFRC is a congestion control which sends evenly-spaced packets, without
burst. More packets than TCP are prioritised, but not all (6 out of 12/13). The reason is that for the
seventh packet the throughput of the TFRC flow is a bit higher than the link at the right of the router
can process, so it arrives at the router before the sixth packet has leaved it. The following packets
suffer from the same problem.
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DropTail FavourTail
Sum of transmission times (in seconds) 2618.68 2410.34

Number of lost packets 2470 1608
Number of lost data packets 913 626

Table 1.1: Global metrics.
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Figure 1.10: Transmission time of all the flows; the two curves have different values on abscissa.

Complex network

In order to evaluate FavourTail over a more realistic case, a more complex network is used, the same
as in figure 1.5 (page 10). Each of the five loops has 8 routers. Each router (except the 5 core routers)
has 2 DSLAMs connected to it, and each DSLAM has 3 hosts connected to it. Each link has the
following characteristics: 10Mb/s bandwidth, 10ms delay, DropTail (or our FavourTail).

We emit 500 FTP over TCP/Newreno connections (flows) with random and non identical hosts as
source and destination. Each connection starts at a random time between 0 and 20 seconds and sends
a random number between 10 and 600 packets.

Results Several metrics are used to compare the classical DropTail and FavourTail, we divide them
in global and short flows specific ones.

Global metrics refer to metrics about the whole simulation. Table 1.1 presents some results. It can
be seen that FavourTail globally reduces the transmission time of all the flows. The time reduction
is globally dispersed among the flows, as shown in figure 1.10, but among the flows with higher
transmission time, as will be detailed later. As a matter of fact, if a scheduler treats first the shorter
tasks, then the total finish time is smaller. This might explain the reason why we obtain a shorter
transmission time. We also notice that the number of lost packets, and of lost data packets, is much
smaller with FavourTail by about 30%.

A second metric is specific to short flows. Our idea favours packets when they are alone (i.e. no
other packets from the same flow exist) on their current router. This leads to the idea that flows with
few packets to send should be favoured. However, several results prove the contrary.

The transmission time of each flow for both variants is given in figure 1.11. They are ordered
by the transmission time of the FavourTail variant, in figure 1.11(a), and the DropTail variant, in
figure 1.11(b). In figure 1.11(a), it seems that flows with short transmission times are indeed favoured.
However, this is not true. This is clearly shown in figure 1.11(b), where for short transmission times
(on the left x-axis in this figure), the DropTail variant seems to have smaller times.

It results that using the DropTail or FavourTail transmission time is subjective. An objective
comparison, i.e. order the abscissa based on the “length” of flow, is therefore needed. Several criteria
may be chosen as length of flow: (1) number of packets sent by the flow, (2) number of packets
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Figure 1.11: Transmission time of all the flows, ordered by the transmission time of FavourTail variant,
and DropTail variant.
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Figure 1.12: Transmission time of the first 100 flows, ordered by the number of packets divided by the
number of flow links.

divided by the number of intermediate routers (or links), (3) number of packets divided by the number
of concurrent flows inside path routers, and so on. For our purposes, i.e. favouring packets with few
packets, the most appropriate criterion is the number of packets divided by the number of intermediate
routers (we use here a simple ratio function for simplicity purpose). A smaller value means more
favoured. In fact, the more the packets, the smaller the gain of FavourTail; the more the number of
links, the higher the gain of FavourTail.

Figure 1.12 presents the transmission time ordered by the number of packets divided by the number
of links. The curve for FavourTail is more often below the other curve, so FavourTail is slightly better.
The difference between the two curves are not however high. The plot for ordering by the number of
packets shows similar results (albeit the difference between both variants is a bit further reduced).

Several parameters of the simulation have been changed, the results are quite similar. The param-
eters changed are:

• all the traffic is TFRC instead of TCP;

• the data size of flows are not random, but use Pareto distribution;

• the first 50 flows have between 1 and 10 packets, all the others have between 200 and 800 packets
to send;
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• each core router has attached only one DSLAM, and each DSLAM has only one host attached.

A third metric is the influence of the router queue size. We vary the queue size of each router
buffer from 2 to 200 packets. This allows to emulate a congestion level inside the whole core network.
We use the flower network topology previously presented with random size of data transfer.

As expected, and in order to verify our implementation, when the queue size is very small (i.e. when
the queue size is set to two), the difference is nil meaning there is no advantage for both mechanisms.
When the buffers size are large, meaning that there is no congestion inside the network, our proposal
does not bring any advantage. However, when the queue size is ranging from 10 to 70, that can
symbolize a congestion level considered as severe to slight, our proposal allows to decrease the number
of dropped packets and as a result, the number of retransmitted packets which directly results by a
lower transmission time for the TCP flows.

1.3.5 Conclusions

This section presented and evaluated a novel forwarding scheme. We show that this scheme leads
to interesting properties allowing to decrease the overall transfer delay of TCP flows in the context
of best-effort networks. The results obtained are quite unexpected, as intuitively we would expect
a stronger benefit of this mechanism to short TCP flows and on the contrary measurements show
an overall benefit for long flows without high impact over short ones with our proposal compared to
DropTail. Indeed, the main findings are that FavourTail decreases the number of packets dropped and
as a primary consequence, the sum of transmission times is thus reduced. However, the short flows
are not noticeably favoured compared to the other longer flows.

1.4 Analysis of congestion control in sensor networks

This sections studies different congestion control methods applied to a centralised control system, con-
sisting in several sensors/actuators and one controller. Sensors/actuators are linked to the controller
through an IP network. Depending on the data exchanged, the network can be congested. In such
case, the congestion control used by data exchange becomes important. We evaluate four congestion
control methods used by three classical transport protocols, UDP, TCP and DCCP. Simulation re-
sults on a centralised control system show that TCP and DCCP offer a good trade-off on reliability
vs. throughput, whereas UDP has best results provided that the network is well configured.

1.4.1 Introduction

Control systems are devices which manage the behaviour of systems. Closed-loop control systems
consist of sensor(s) which gather data from the environment, actuator(s) which act on the environment,
and controller(s) which receive data from sensor(s) and give commands to actuator(s). In our case,
we are interested in Distributed Intelligent MEMS (DiMEMS) systems [29] which comprise all these
elements but at a micro-scale. The Smart Blocks2 and the Claytronics3 projects are good examples
of DiMEMS systems.

Control systems can be as simple as a sensor, an actuator and a controller. They can be centralised,
consisting of several sensors and actuators but a single controller. They are distributed if there are
several controllers too.

A networked control system (NCS) is a control system where the components are connected to-
gether through a network, and which has real-time constraints. The network is shared among the
components either because it allows to reduce system costs or because the interconnection is wireless.
NCSs have therefore a broad range of applications such as mobile robotic systems, ground-based like
in RoboCup or unmanned aerial vehicle (UAV) [39].

The network is shared among the components. Designing the network capacity so that congestion
never appears is not always feasible, for example when data generated is not known in advance or

2http://smartblocks.univ-fcomte.fr
3http://www.cs.cmu.edu/~claytronics
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when network has no fixed bandwidth such as wireless networks, which are subject to interference. So
congestion can occur if data transmitted exceeds in size the network capacity. Congestion control is a
mechanism to regulate sending rate so that data is sent at the fastest rate that still avoids congestion.
This can be thought as network resource optimisation. When congestion occurs in network, data is
lost. It is therefore important to analyse congestion control impact on data transmission.

In NCS research, data transfer is generally treated with low-level protocols, such as Ethernet and
TDMA. Very few papers deal with congestion control in IP-based systems, yet this is a known chal-
lenge: “These challenges [for NCS] involve the optimization of performance in the face of constraints
on communication bandwidth, congestion, and contention for communication resources, delay, jitter
[...]” and “When communication channels in a data network are shared resources among multiple user
nodes, network congestion and contention for bandwidth pose challenges for control implementations
in which there are hard real-time requirements” [10]. [157] for example notices that different types of
data exist in an NCS, hence different protocols or different priorities for packets can be used. In this
context, [58] shows promising results for packet prioritisation, results which are even more appropriate
to control systems since the network is under the control of one organisation.

Our contribution is to discuss the interest of having congestion control in NCS. We analyse simu-
lation results of classical congestion controls used above IP-based networks.

Background

Congestion control The IP protocol, used also by Internet, does no attempt to optimise network
usage when sending data, because it does not take into account availability of network resources. Net-
work optimisation has been left on/to the upper transport protocol. The classical transport protocols
on Internet are TCP [152] and UDP [150], and recently DCCP was standardised too [115]. The way
resource usage is taken into account is through a congestion control. Among the transport protocols
presented, UDP has no congestion control with no data reliability, TCP has a window-based congestion
control with 100% data reliability through retransmission (all data arrives to destination), and DCCP
allows the programmer to choose a congestion control among several standardised controls, such as
TCP-like [79], similar to TCP, and TFRC [80], an equation-based control, with no data reliability
either.

When UDP receives a packet to be sent to network, it sends it immediately, no matter the network
state. This intuitively leads to the highest sending rate, with the drawback that packets can be lost
if the network is congested.

When TCP or DCCP receives a packet to be sent to network, it checks whether network is able to
transport it. If yes, it is sent immediately, otherwise it is stored in a temporary buffer until network
conditions allow to send it. The role of congestion control is to take care of the timings when packets
are sent to the network.

TCP congestion control works as follows. At the beginning of a transmission, sender uses a
slow start phase, where data sending rate increases exponentially. When data rate exceeds network
bandwidth, packets are lost and sender enters to congestion avoidance phase, a network-friendly phase
where data sending rate increases linearly; this is the phase used most of the time for long enough
transmissions. Upon a lost packet detection, sender sends it immediately, known as fast retransmit
phase, and enters a temporary fast recovery phase where it sends data at a smaller rate until it recovers
from the loss, at which time it reduces by two the data rate and goes back to the congestion avoidance
phase. This congestion control is used by DCCP/TCP-like too.

On the contrary, TFRC uses a sending rate equation whose parameters are filled with transmission
parameters, most notable with the number of lost packets. Each RTT (Round Trip Time, the time
for a packet go and back), the equation parameters are updated and data sending rate changes. This
leads to a smoother changing in sending data rate, which is a useful property for some applications.

Simulators Control and network research communities usually use simulators to validate algorithms.
Two such simulators are TrueTime and ns2, respectively.

TrueTime is based on Matlab/Simulink and targets real-time and embedded systems. The simu-
lation model is based on three blocs:
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Figure 1.13: Network used for simulations.

• TrueTime kernel, for logical controls and data processing;

• TrueTime network, for packet exchange in a local network such as Ethernet, CAN, TDMA and
FDMA;

• a controller.

A fourth optional block can be used, TrueTime battery. This simulator focuses on low-level sim-
ulations. Instead, we are interested in high-level protocol simulations, where congestion control is
implemented.

Network simulator version 2 (NS2) is usually used in the network research community. It provides
low-level and high-level protocols, and several transport protocols are supported. The accuracy of
results for low-level protocols is low, but for high-level protocols, as in our case, it is high.

Given the support for various congestion controls, we choose ns2 for our simulations.

1.4.2 Related work

Networked Control Systems (NCS) lie at the intersection of control and communication theories and
it is therefore relevant to compare this study to NCS ones. A NCS has four main characteristics
[96, 196] that have to be taken into account in order to control the whole system, bandwidth-limited
communication channels, sampling and delay, packet dropout and system architecture. If the first
three characteristics match our concerns which is network transmission, the last one only deals with
the architecture of the system i.e. centralisation vs decentralisation of the control. Nevertheless, studies
and modelling of quantization effect [95, 139], packet drop out [193] or consensus problems [144] are
important and must be taken into account together with the congestion control.

The topic of decentralised and distributed control of systems has been active for many years [169].
Decentralised control limits its study to special systems like spatially invariant ones [15] or nested,
chained or symmetric systems [187], whereas distributed control makes less assumptions about the
system [133]. Linear matrix inequalities (LMI) can be used either for decentralised [26] or for dis-
tributed systems [49]. LMI has proven to be efficient when dealing with linear systems whose physical
topology is represented by an arbitrary graph [117] but these results have not been extended to non-
linear systems. It has also to be noticed that these methods propose only to control large distributed
system but do not help to program it. If some problems require algorithmic solutions, these methods
will not be used.

1.4.3 Simulation results

The network used for carrying out tests is presented in figure 1.13. Three agents are connected through
a router to a controller. Agents are both sensors and actuators. The sensor sampling period is 50ms;
they gather information about the environment and send to the controller sensor data through the
form of a packet of 1kB (1024 bytes) of application data each 50ms. Note that this gives slightly
different packet sizes, since UDP, TCP and DCCP headers have different sizes. The first sensor starts
sending at t=0, the second at t=100ms and the third at t=200ms. Upon reception of a sensor data
(sensor packet), the controller answers by sending it an order through the form of a packet of 200 bytes.
The topology is set so that there is a small congestion on router-controller link, whose bandwidth is
a bit smaller than total sent data. The reason for this choice is that if a network is not congested, a
congestion control brings of course no benefit, whereas we are interested to know if congestion control
is useful.
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Figure 1.14: Results for UDP protocol for the first 5 seconds.

The router uses a DropTail queue management, which means that an incoming packet is rejected
if and only if the buffer is full. The buffer size is set to 50 packets, the default value on the simulator.
Each simulation is run for 360 seconds. The total number of packets generated by each sensor is 20
packets/sec * 360 sec = 7200 packets (in reality, between 7195 and 7199, since some sensors start a
bit later).

Note that sending and receiving are done on different “cables”, so they do not share the 256kb/s
link. As controller answers are small, they do not provoke congestion, hence we are not interested by
controller answers.

The figure accompanying each method shows the delays of each packet generated by each sensor,
with the time on x-axis. A 0 delay means the packet is lost.

The layer which takes care of network congestion and is responsible for packet delays is transport
layer. We tested three transport protocols, the classical TCP and UDP, and a relatively new standard-
ised protocol, DCCP. The latter can choose its congestion control, and we tested the two currently
standardised: TCP-like and TFRC.

Some applications in control systems are interested by delay (time for the sensor data to arrive
to controller), others by losses. On some applications values are cumulative, i.e. the value of one
parameter at one time removes the need to know the value of the parameter before (e.g. the current
temperature of a system or the current position of an object), which means that losses are tolerated.
On others, such as videoconferencing, the delay is an important parameter, while the reliability is
important for audio and not so important for video. Therefore, we have to analyse both delays and
losses in simulations.

For UDP protocol

Figure 1.14 shows that the shapes of the delays of the three sensor data packets are very different:
starting from second 2, one sensor has a constant delay of 1.5s, another one a varying delay from 0s
to 1.5s, and a third one has 0 delay, meaning that all its packets are lost. What happens is a timing
issue: each time a packet from the latter sensor arrives at the router, its buffer is full and the packet
gets rejected. Such synchronisation is a known characteristic of a DropTail queuing discipline, as set
at the router, exacerbated by the fact that UDP does not use a congestion control.

10996 packets are lost, and all of them are lost by the network. No packet is retransmitted,
according to UDP specification [150]. In the figure, packets start to be lost at time 1.95s. This agrees
with theoretical results: During that time, about 1.95 s * 20 packets/s * 3 sensors = 120 packets have
been sent, and 1.95 s * 32 = 64 packets have been forwarded by the router. This gives a difference of
56 packets, approximately equal to the buffer size on the router, set to 50 packets, as written above.

The highest delay is 1.61s, while the average delay for received packets is 1.35s. The highest delay
appears for a packet which arrives at the router while its buffer is full less one packet size, hence it
takes the greatest time to be processed by the router. This explanation on the highest delay stands
for the whole this section, for all the protocols below.
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Figure 1.15: Results for TCP protocol for the whole simulation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  10  20  30  40  50

Pa
ck

e
t 

d
e
la

y
 (

se
cs

)

Time (secs)

S/A1
S/A2
S/A3

Figure 1.16: Results for DCCP/TCP-like protocol for the first 50 seconds.

For TCP protocol

Figure 1.15 presents the results. The figure shows that the shapes of delays are similar, which is not
surprising given that TCP uses a fair congestion control. This saw teeth-like curve is also classical for
throughput of TCP protocol. At the beginning of the transmission, TCP increases very fast the data
rate, and as a result the router buffer fills up and delay increases. Afterwards, TCP enters a loop
where it increases slowly the data rate until a loss is detected, and reduces it by two when it arrives
[152], which leads to similar changing in packet delay.

63 packets are lost by network, and according to TCP specification they have all been retransmitted
and eventually received. 10382 packets are lost on the sensor itself, without entering the network. The
explanation is that the built-in congestion control of TCP delays packets until network resources are
available, and as a consequence TCP buffer fills up and eventually simply discards packets coming
from the sensor.

The highest delay is 1.68s and the average is 1.38s.

For DCCP/TCP-like protocol

Figure 1.16 presents the results. As for TCP, it shows that the shapes of the transfer time of the three
sensor data packets are similar. This is not a surprising result, since TCP-like congestion control uses
the same law for sending rate as TCP.

339 packets are lost by the network, which is a bit greater than for TCP. None of them has been
retransmitted, since DCCP does not retransmit them (even if the exact number of each lost packets
is known by the sender). 7021 packets are lost on the sensor for the same reason as for TCP.

The highest delay is 1.53s and the average is 1.09s.
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Figure 1.17: Results for DCCP/TFRC protocol for the whole simulation.

Protocol Sensor Packets Delay
generated lost on sensor lost on network received highest average

UDP 1 7199 0 7163 36 1.61 1.35
2 7197 0 3432 3765
3 7195 0 0 7195

TCP 1 7199 4425 0 (26 retr) 2774 1.68 1.38
2 7197 4380 0 (26 retr) 2817
3 7195 1577 0 (11 retr) 5618

DCCP/TCP-like 1 7199 2276 115 4808 1.53 1.09
2 7197 2510 108 4579
3 7195 2235 124 4836

DCCP/TFRC 1 7199 3496 60 3643 1.63 1.41
2 7197 3184 54 3959
3 7195 3193 60 3942

Table 1.2: Numerical results for the four congestion controls, sampling is 50ms and simulation runs
for 360 secs.

For DCCP/TFRC protocol

Figure 1.17 presents the results. Like TCP, TFRC is a fair congestion control, so the shapes of the
transfer time of the three sensor data packets are similar.

174 packets are lost by the network, which is a bit greater than for TCP. None of them has been
retransmitted, since as written above DCCP does not retransmit them. 9873 packets are lost on the
sensor for the same reason as for TCP.

The highest delay is 1.63s, and the average is 1.41s.

1.4.4 Discussion

Table 1.2 presents a numerical overview of the simulation results (the delay columns show results for
all the sensors). Several conclusions can be inferred.

Using UDP means that some sensors can be almost completely muted by synchronisation issues,
as given by the first sensor. Also, UDP has by far the most losses on the network, while the protocols
with congestion controls avoid it and lose almost all their packets on the sensor itself. DCCP/TCP-like
has the highest number of packets received, with the three others a bit behind it.

The highest delay is more or less comparable, since it is obtained when the router buffer is filled,
and this case appears for all the protocols. Note that packets can wait on sensor buffer too, but this
buffer is drained much faster since the link is much greater than the bottleneck link (1 Mb/s vs. 256
kb/s). On the other hand, the average delay is very favorable to DCCP/TCP-like (1.09 secs).

These results are not surprising, as explained in the following.

First, if a network is not congested, a congestion control brings of course no benefit. So in the
following we are interested what happens when data size is greater than network capacity.
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Internet is a network where flows appear and disappear generally irregularly, because user be-
haviour for creating flows is unpredictable and sometimes interactive. In contrast, control systems
use sensors which usually send data regularly. Such regularity sometimes appears in Internet too, for
example for constant video transmission such as television broadcasting. For such cases, where data is
sent at a regular pace, the sending rate smoothing done by congestion control is of no help. It should
also be noted that when there are several destinations with various bandwidths, congestion control
can avoid useless packet losses, situation known as network collapse, an example of which is given in
[76]. This is however not the case in a centralised control system which is the focus of the current
work.

The delay is affected too by the congestion control. A congestion control usually delays packet
sending on sender, waiting for network availability or for acknowledgement reception (also known as
TCP pacing), which increases delay on sender. On the other hand, a congestion control keeps router
buffers smaller, hence reducing packet delay on routers.

UDP too has a limitation, because in conjunction with the simple DropTail queuing mechanism it
leads to global synchronisation, preventing some sensors to send their data.

Given the discussion above, it turns out that UDP is not worse than TCP or DCCP, and more
analysis is needed to infer what is the best congestion control in sensor networks. What is certain is
that, in order to avoid synchronisation issues, UDP must be used together with a more sophisticated
queuing mechanism, such as RED [78, 34], which rejects packets randomly before the queue is full.

1.4.5 Conclusions

This section presented a comparison among several congestion controls used by currently-used trans-
port protocols for a centralised control system, based on simulation.

Results show that UDP in conjunction with a simple queue management mechanism has some
crucial issues, but a more sophisticated mechanism should solve them. Aside that, given that the
network is slightly congestion, no protocol or congestion control is definitely better than the others in
terms of number of packets received. This is because in a control system data is generated at regular
intervals, and the smoothing effect of congestion control has no effect. On the other hand, in terms of
delay, DCCP/TCP-like gives best results. What parameter is more important depends on the control
system.

1.5 Differentiation between wired and wireless packet losses

One major yet unsolved problem in wired-cum-wireless networks is the classification of losses, which
might result from wireless temporary interferences or from network congestion. The transport protocol
response to losses should be different for these two cases. If the transmission uses existing protocols like
TCP, losses are always classified as congestion losses by sender, causing reduced throughput. In wired
networks, ECN (Explicit Congestion Notification) [164] can be used to control the congestion through
active queue management such as RED (Random Early Detection). It can also be used to solve the
transport protocol misreaction over wireless networks. This section proposes a loss differentiation
method (RELD), based on ECN signalling and RTT (Round Trip Time), and applied to TCP-like.
TCP-like is one of the three current congestion controls present in the new transport protocol DCCP
(Datagram Congestion Control Protocol). Our simulations, using a more realistic simulated loss error
model for wireless networks, show that RELD optimises congestion control and therefore increases the
performance of transport protocols over wireless networks, leading to an average performance gain
ranging from 10% to 15%.

1.5.1 Introduction

Wireless networks are now widely deployed and are commonly used to access services on the Internet
in spite of lower performance noticed when compared to wired networks [13, 12]. Losses in wired
networks are mainly due to congestion in routers, because congestion is usually handled by dropping
the received packets when the router waiting queues are full or nearly full. Hence, losses in wired
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networks can be seen as an indication of congestion. This is different in wireless networks where losses
often occur for various reasons, for example due to interference or poor link quality (high distance
between the base station and the mobile device).

IEEE 802.11 already includes mechanisms to combat losses at the MAC layer. Wireless devices
retransmit lost packets on a wireless link a certain number of times (6 for example). However, in
case of long interferences, a packet can be lost 7 times consecutively on a wireless link. In this case,
the device drops it and the transport level of the source discovers the loss. We are interested on loss
processing at transport level.

The performance degradation reported on wireless networks appears because TCP (Transport
Control Protocol) [152], commonly used by Internet applications and initially designed for wired
networks, classifies any data loss as a congestion loss; therefore it reacts by reducing the transmission
rate. However, in wireless networks, losses are not necessarily caused by congestion. There are
many proposals on how to optimise the transport protocols performance on wireless networks in the
literature; the main idea is that transport protocols should reduce their transmission rate only in case
of congestion and not if data is lost for other reasons [12, 19, 17, 11].

Nowadays, more and more applications used over Internet, for example real-time media like audio
and video streaming, can cope with a certain level of losses. If they use TCP, the high reliability
may come at the price of great latency. UDP (User Datagram Protocol) [150], which does not have
these drawbacks, lacks congestion avoidance support and flow control mechanisms. RTP (Real-time
Transport Protocol) is an application protocol [173] widely used for streaming multimedia content
(usually on the top of UDP). It allows the receiver to reorder received packets thanks to the sequence
number included in the RTP packet header. RTP also uses a timestamp field which is useful in the
context of real time applications synchronisation. On the other hand, RTP, like UDP, does not deal
with network conditions because it also lacks a congestion control.

Another promising protocol for these applications is DCCP (Datagram Congestion Control Proto-
col), recently standardised as RFC4340 [115], since it does not provide reliability but allows the use of
congestion control protocols. One interesting point of DCCP is the freedom of choice for congestion
control protocol: TCP-like [79], which reproduces the AIMD window progression of TCP SACK, or
TFRC (TCP-Friendly Rate Control) [80], among others. As described in [115], DCCP implements
bidirectional and unicast connections of congestion-controlled unreliable datagrams, and also:

1. negotiation of a suitable congestion control mechanism

2. acknowledgement mechanisms for communicating packet loss and ECN (Explicit Congestion
Notification) information

3. optional mechanisms that indicate to the sending application, with high reliability, which data
packets reached the receiver, and whether those packets were corrupted, dropped in the receive
buffer or ECN marked.

On the other hand, DCCP suffers from the same problem as TCP in wireless networks, meaning that
any data loss is considered to be caused by congestion.

Because of all reasons mentioned before and because wired and wireless are often conjointly used,
there is an increasing need for transport protocols to take into account the properties of wireless
links and the various reasons for data loss. In this section we propose a new approach (RELD, RTT
ECN Loss Differentiation) based on TCP-like over DCCP. It uses ECN in conjunction with RTT as
the main factor to differentiate congestion losses from wireless losses, see section 1.5.5. RELD is an
evolution of our previous method EcnLD [158] for loss differentiation, with an enhanced scheme that
allows better realistic measurements than those obtained in classical ns2 simulator.

Contrary to some articles presented in related work (next section), and also of our previous article
[158], which used simple (homogeneous) error loss models for wireless links, the new results show
that in a real wireless environment where wireless losses are not uniform, RTT increases for wireless
losses, and not for congestion losses. In fact, an interference on the wireless channel will prevent the
communication to continue throughout its duration. Hence, all packets sent during the interference
time are buffered in the wireless access point. For each of them, a fixed number of MAC retransmissions
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is done, then the packet is dropped if it is still not acknowledged at MAC level. This buffering leads
to an increasing of the RTT value for the packet which arrives just after the end of the interference.
The results obtained confirm this idea.

1.5.2 Related work

Many approaches have been proposed in the literature to differentiate losses. They are classified into
three categories.

Intermediate agent Certain approaches impose implementation of an intermediate agent between
the source and the destination which is localised normally at the base station. Snoop [13, 12] is a
TCP-aware link layer approach for local retransmission. It resides on a router or a base station and
records a copy of every forwarded packet. Then, it inspects the ACK packets and carries out local
retransmissions when a packet is corrupted by wireless channel errors. Other similar approaches, like
ELN (Explicit Loss Notification) [11], can also be used to inform the sender that a loss has happened
over wireless or wired networks. Although this kind of approach has a specific application field, it is
necessary to make changes to the current base stations. Additionally, it needs more processing power
at the base stations to process each packet.

End-to-end In this case, these approaches use end-to-end mechanisms. They do not require any
network infrastructure changes. These methods can generally be classified into two main categories:
those which depend on IAT (Inter Arrival Time) and those which depend on ROTT (Relative One-way
Trip Time).

Parsa and Garcia in [147] consider losses as an indication of congestion if ROTT is increasing,
and wireless losses otherwise.

Biaz [17] and its modified version mBiaz [38] use packets inter arrival time (IAT) at the receiver
to classify losses. Biaz considers that when a packet arrives earlier than expected then a congestion
loss has happened before. For wireless losses, the next packet arrives at around the time it should
have, i.e. for n lost packets, if (n+ 1)Tmin ≤ Ti < (n+ 2)Tmin then the n packets are congestion
losses. Otherwise, wireless losses.

mBiaz corrects an important misclassification for congestion losses. It makes a little modification
to the high threshold of Biaz which becomes as follows: (n+ 1)Tmin ≤ Ti < (n+ 1.25)Tmin.

SPLD (Statistical Packet Loss Discrimination) [146] depends also on IAT. This scheme has a
packet monitoring module to collect information about arriving packets. If during a certain time there
are no losses, a statistical module updates the minimum IAT and the average. Then when losses occur,
a discriminator module use IATavg to classify losses. SPLD considers that a loss is due to congestion
if current IAT is greater than or equal to IAT stable (IATavg), otherwise it is a wireless loss.

Spike, derived from [185], is a method based on ROTT. In Spike, the packet is either in Spike
state or not. A loss is considered a congestion loss in Spike state, and wireless loss otherwise. A
packet enters Spike state when ROTT > Bspikestart, where Bspikestart is the threshold indicating the
maximum ROTT, and it leaves it if ROTT > Bspikeend, where Bspikeend is the threshold indicating
the minimum ROTT.

ZigZag [38], in addition to the deviation and the average of ROTT, is based on the number of
losses n. If:

1. n = 1 and rotti < rottmean − rottdev/2), or

2. n = 2 and rotti < rottmean, or

3. n = 3 and rotti < rottmean − rottdev, or

4. n > 3 and rotti < rottmean − rottdev/2

then the n losses are considered as wireless losses, and congestion otherwise.
ZBS, described in [38], is a hybrid algorithm using ZigZag, mBiaz and Spike which chooses one of

them depending on the following network conditions:
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if (rott < (rottmin + 0.05 ∗ Tmin)) use Spike;
else if (Tnarr < 0.875) use ZigZag;
else if (Tnarr < 1.5) use mBiaz;
else if (Tnarr < 2.0) use ZigZag;
else use Spike
where Tnarr = Tavg/Tmin (the average and the minimum inter arrival time).

TD (Trend and Loss Density based) [45] uses the trend of the ROTT and the density of losses.
Authors observe that first, congestion losses often occur around and after a peak of ROTT curve
and the network congestion last for a period of time after that. Second, rare are the cases when a
congestion loss happens alone. Generally, a single packet lost is regarded as a wireless loss. So, TD
uses loss trend to indicate if the packet loss happens around the ROTT peak curve or not and loss
density to precise how often the loss occurs.

Finally, Barma and Matta in [16] is another end to end algorithm but uses the variance of
RTT. Contrary to our results, they notice that RTT is high for congestion losses and low for wireless
losses. In our opinion their results are based on a wrong assumption in the theoretical model4 and in
the simulation model used: to simulate a wireless network, a wired link with transmission errors was
used5, however the MAC retransmissions are not simulated, which means that the RTT increasing
due to MAC retransmissions is not taken into account (see section 1.5.4 for detailed information).

Performance evaluation in [27] shows that methods based on ROTT perform better than those
based on IAT because losses often appear around the peak of ROTT. Methods like Biaz and mBiaz
have problems when several streams share the wireless link. Spike performs better than TD under the
situation of low traffic but TD is better in case of high network congestion.

ECN Sender uses ECN (Explicit Congestion Notification) marking. Normal utilisation of ECN to
distinguish a congestion from a wireless loss works by testing the last interval of time in which a
loss happened. If the source had previously received an ECN, then it indicates congestion, if not, it
indicates a wireless loss. TCP-Eaglet [18] authors consider that ECN marking does not work all the
time for classification losses. They propose to halve sending rate when either TCP is in Slow Start
phase and there is one or more losses, or TCP sender has an ECN indication in Congestion Avoidance
phase as a response to imminent congestion.

Another method, similar to TCP-Eaglet, is ECN-D [198]. According to ECN-D, two scenarios are
possible:

1. there are only wireless losses in the current congestion window (cwnd)

2. wireless losses occur simultaneously with congestion losses.

For the first scenario, ECN-D finds out that a wireless loss occurred because of the non presence of
ECN notification. So a loss is considered as congestion loss if and only if there is an ECN mark.
Additionally, for better performance, the value of cwnd at the sender is reduced only once per window
in presence of ECN marks. ECN-D is proposed to optimize the SCTP performance which does not
support the use of ECN messages.

Our results show that TCP-Eaglet and ECN-D are not efficient differentiation schemes because
they do not take into account congestion losses without ECN mark. However, as our RELD belongs
to the same category, we evaluate in this work the performance of RELD with regard to TCP-Eaglet
(same idea as ECN-D).

1.5.3 Simulation environment

In this work, it is mandatory to dispose of realistic lower levels models (radio propagation and medium
access control), as we are interested in the impact of the real radio environment on DCCP communi-
cations and the ways to overcome the resulting problems.

4“The basic tenet of our approach is that if the packets are suffering congestion losses, the observed RTTs will vary
but if packets are suffering random losses, the observed RTTs will not vary much”.

5“These [wired] links represent wireless links with transmission errors”.
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Propagation and loss model

From the point of view of a higher level protocol such as DCCP, only lost packets are really taken
into account (thanks to the layering of network protocols, DCCP is not designed to be aware of radio
attenuation, collisions or interferences). However, the way these losses appear, their frequency and
their distribution over time have a great impact on the behaviour of DCCP and the enhancements
we are proposing in this paper. Different ways of simulating realistic losses exist. A first, simple, one
would consist in using a traditional radio propagation model (such as the well known tworayground
or shadowing models of NS2), and then add a loss or error model which drops a certain amount
of packets. This is a perfectly viable solution, but we have chosen instead to use a more realistic
propagation model, which will cause all the losses by itself, as it can be much more easily linked or
derived from a real environment.

Many models exist, each one having its own strengths and drawbacks. Depending of the context,
one has to be particularly careful when choosing the model used. Several families of models that can
be found in the literature: Friis [81], models integrating a kind of fast-fading causing packet drops,
e.g. Gilbert-Elliot model, shadowing [199], more complex models but computationally-intensive [179],
even more advanced propagation algorithms [53], or take a different approach and essentially use real
collected data [70]. The simpler models (Friss, tworayground, shadowing, ...) are not detailed nor
realistic enough for us to use here, in particular because of their simplistic losses distributions over
time. On the other and, models which require an extremely detailed modelling of the environment (for
use with raytracing or similar techniques) produce results that are only valid in the specific context
that was modeled.

For these reasons, we decide to use the shadowing-pattern model described in [62] and [63], which
is based on the standard shadowing but adds the ability to change the signal strength in a bursty
way, which in turn produces statistically realistic bursty losses. The shadowing-pattern model was
originally designed for use in vehicular ad hoc networks, but is quite versatile. This model mimics
the reality where different elements in the environment have cumulative effects on the strength of the
signal at the receiver. It makes use of so-called perturbators, which are an abstraction of real-world
elements (or group of) that have an impact on the signal strength. Those elements can be as varied as
peoples or cars passing by, doors opening and closing, other nodes sending data over the radio channel,
etc. Perturbators affect a limited and configurable area of the virtual environment. They alternate
between two states, active and inactive. In active state, they affect, usually by reducing the strength,
any signal received by a node inside the area of effect of the perturbator; in inactive state, they have no
effect at all. Each perturbator is thus defined by the time and the standard deviation of the time spent
in both states, along with its strength when active. Figure 1.18 shows how the individual effects of
two perturbators evolve over time and also how they can be combined and sometimes pass a threshold
they would not have been able to if taken individually.

As explained in [62], this techniques does not aim for an accurate modeling of a particular envi-
ronment. It instead aims at producing extremely realistic statistical behaviours, particularly in term
of losses distribution over time. It is also easy to configure and requires lightweight computations. In
fact, when using shadowing-pattern, one has just to choose a set of perturbator and configure their
parameters. As their effects combine, a set of a few (2 to 5) perturbators is usually enough to describe
a quite realistic environment. And as any average and standard deviation can be given, it can be used
to model real world phenomena of any time scale.

Simulation topology

Figure 1.19 shows the dumbbell topology employed for carrying out the simulations. It is a wired-cum-
wireless topology with 2 senders (s1 and s2) and 2 receivers (m1 and d1). The link between routers
R1 and R2 is the bottleneck for wired network. The wireless network uses the standard 802.11 for
wireless communications, with a bandwidth of 54Mbit/s. Each node (routers, access point and edge
nodes) uses RED for queue management with default values. ECN is enabled on all of them. The
packet size is 500 bytes and the simulation time is 60 seconds.
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Figure 1.18: Effects of perturbators over timer and combination

Figure 1.19: NS2, network topology.

Configuring the physical network

The simulator used is NS2 [140] version 2.34. In the following, in order to evaluate our propositions in
a range of realistic contexts, we will run 51 different tests over this topology, changing the parameters
of the radio propagation model.

The difference between the 51 tests is the level of wireless perturbation added to the wireless
network. Perturbations on the wireless channel are performed using shadowing-pattern perturbators.
A mix number of zero to three out of seven perturbators is used in each of these tests. Table 1.3 shows
these seven perturbators, their power, when they are active and when they are not. As the simulations
presented are focused on standard WiFi networks (a mobile computer accessing the network through
a base-station), and as we are interested in DCCP flows, we will only use relatively high frequency
perturbators, with individual effects lasting no more than one hundredth second. It is obvious that
phenomena that could prevent any communications in the network for many seconds or even hours
are beyond the scope of DCCP flow control optimisation. Also keep in mind that even no individual
perturbator effect lasts for more than a few hundredths of a second, multiple perturbator effects and
durations can overlap. In such (common) event, they effectively prevent communications for a longer
period.

Because of the chosen fixed topology, all perturbators taken alone except number 7 had no effect
on the reception threshold of wireless channel. When two of them are combined and active the signal
attenuation brings the wireless signal under the reception threshold which translates to packet loss
on wireless channel. Perturbators number 1 and 2 have the same power but with different time effect
(2 is stronger than 1). Same thing for 3 and 4 (4 is stronger than 3). So, in total we have one test
without perturbation and 50 tests with a number of one to three mix perturbators. This variety of
tests aims at producing a group of realistic wireless environments, ranging from absolutely not to very
disturbed radio channels.
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perturbator number power inactive time standard deviation active time standard deviation
(dBm) (sec.) (sec.) (sec.) (sec.)

1 -2 0.03 0.005 0.01 0.01
2 -2 0.01 0.02 0.03 0.01
3 -3 0.03 0.005 0.01 0.01
4 -3 0.01 0.02 0.03 0.01
5 -4 0.03 0.01 0.02 0.01
6 -5 0.04 0.01 0.02 0.01
7 -6 0.04 0.01 0.01 0.01

Table 1.3: The seven perturbators.

1.5.4 Influence of losses on RTT

Losses are traditionally caused by buffer filling on routers. However, nowadays wireless networks are
ubiquitous, and in these networks losses are numerous and increase with signal degradation according
to various environment circumstances: distance between mobile and base station, high bit error rate
related to wireless link and so on. Such losses induce sender to halve its sending rate, because it
wrongly considers losses as a sign of congestion, which is not the case. For better performance the
sender should be able to distinguish congestion from wireless losses. The purpose of this section is to
show that the RTT can be used to differentiate losses.

But before this, the next section analyses the usefulness of loss differentiation.

Note that the RTT used throughout this section is the RTT of the packet following the lost packet
(time between ack reception and corresponding data packet sending), which gives information about
the lost packet.

Mathematical study on usefulness of loss differentiation

In this section a mathematical study is presented to analyse the effect of loss classification on the
overall throughput. The model shown here is derived from [112, 16] and adapted to AIMD (additive
increase multiplicative decrease) algorithm of TCP-like. In TCP-like congestion control, the ACK
ratio (denoted here by R), corresponding to the frequency of ACKs for received packets, is defined as
a parameter6.

On each received ACK, the congestion window (cwnd) is increased by R/cwnd when cwnd ≥
ssthresh. This means that the congestion window is increased by one packet for every window of data
acknowledged without lost or marked packets. On the other hand if the ACK reports lost or marked
packets, cwnd is divided by 2 (cwnd = cwnd/2).

Suppose that p is the packet drop probability for which cwnd is halved (which usually is the
drop probability on overall wired and wireless networks), and RTT is the round trip time. Then the
expected change of cwnd on each received ACK will be:

E[∆cwnd] =
(1− p) ∗R
cwnd

− cwnd ∗ p
2

(1.2)

In case of one ACK each R received packets, the time between each two updates of cwnd is R∗RTT
cwnd .

So, the rate change x(t) in this laps of time is:

dx(t)

dt
=

(
(1−p)∗R
cwnd −

cwnd∗p
2

)
RTT

R∗RTT
cwnd

(1.3)

This differential equation can be written like this:

dx(t)

dt
=

1− p
RTT 2

− p

2R
x2(t) (1.4)

6In DCCP, R can change during a communication. In TCP, R is fixed and equals 1 or 2.
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Let a = 1−p
RTT 2 and b = p

2R . Then by integration we have:∫ x(t)

0

1

a− bx2(t)
dx(t) =

∫ t

0
dt (1.5)

which gives:

tanh−1
(√

b
ax(t)

)
√
ab

= t+ c (1.6)

ln

(
1 +

√
b
ax(t)

)
− ln

(
1−

√
b
ax(t)

)
2
√
ab

= t+ c (1.7)

x(t) =

√
a

b
∗ e

2t
√
ab+C − 1

e2t
√
ab+C + 1

(1.8)

The steady state throughput of TCP-like is given by:

x = lim
t→∞

x(t) =

√
a

b
(1.9)

By replacing a and b with their values we obtain the influence of p on the throughput:

x =
1

RTT

√
2R(1− p)

p
=

1

RTT

√
2R

(
1

p
− 1

)
(1.10)

We now compare equation 1.10 in case of loss classification and without classification. Let pc
be the probability that a packet is dropped because of congestion, and pw the probability that a
packet is dropped on the wireless link. In the case where wireless losses do not halve the congestion
window cwnd (loss differentiation is used), p = pc. In the classical case, no differentiation is used, so
p = pc + pw. Let’s denote also the throughput of the classical method by xc and the throughput of
the loss differentiation method by xl. Then, the expected gain of the throughput is:

xl
xc

=

1
RTT

√
2R
(

1
pc
− 1

)
1

RTT

√
2R
(

1
pc+pw

− 1
) =

√√√√ 1
pc
− 1

1
pc+pw

− 1
(1.11)

From equation 1.11 we can conclude that:

1. if pw = 0 then xl = xc

2. if pw > 0 then xl > xc and the ratio increases while pw increases.

Otherwise said, the loss differentiation usefulness increases while the number of wireless losses pw
increases.

The impact of loss type on the RTT in theory

Impact of a congestion loss on RTT: Let s be the time needed for a router to process and send
a packet, i.e. the service time of the queue. Suppose a packet is enqueued in a router queue (see
figure 1.20). Let n be the place in the queue in the case the previous packet has been enqueued. If, on
the contrary, the previous packet has been dropped, then the packet is placed at position n− 1, hence
it takes s less time to be processed by the router. Otherwise said, after a packet drop, this router
reduces the RTT of the packet by a time equal to s.

An example of value for s is given in the following. Suppose a router with a 100Mb/s interface,
and 1000 bytes packets. The interface sends at 100Mb/s = 12.8MB/s = 12.8kpkt/s. This means that
a packet takes 1/12.8ms, so s ≈ 0.1ms. For higher speed interfaces, s is smaller. Figure 1.21 shows
similar results, with differences of less than 1ms generally.

To conclude, the RTT of a packet decreases after a congestion loss.
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Figure 1.20: Theoretical impact of congestion losses on RTT.

Impact of a wireless loss on RTT: When a loss occurs in a wireless network, it is retransmitted
at MAC level until either it is received, or the retry limit is reached. If retry limit is reached, the
packet is simply dropped.

In order to reduce wireless network collision, for each MAC retransmission the wireless card waits,
according to the standard, a certain number of slots (called a backoff ). A slot s equals 20µs, and the
number is taken randomly in the interval between 0 and the value of contention window (CW). CW is
initialized to 25−1 for the first attempt. If the card does not receive an ACK for the sent packet, CW
doubles (without however exceeding 1023) and the transmission is tried again. This is done for each
retransmission. So for the first retransmission CW=26− 1, for the second retransmission CW=27− 1,
and generally for the n-th retransmission, CW=max(25+n − 1, 1023).

In a real world environment, and especially if the receiver is close to the range limit, the channel
conditions can be bad enough to prevent multiple successive transmission attempts. If all MAC
retransmissions fail, the packet is lost. Consequently, for a packet lost on the wireless network7, the
backoff contributes with an additional time of s·

∑i=n
i=1 max(rand(25+i−1−1), 1023). This time is added

to the RTT of the next packet to arrive, which has waited in the queue. In case of a retry limit equal
to 7 (this value is used in real networks and also in NS2 network simulator, and means 1 transmission
and 6 retransmission at maximum) the additional time is equal in average to:
20µs× (31 + 63 + 127 + 255 + 511 + 1023 + 1023)/2 = 30.33ms.

As such, the RTT increases by about 30ms for a wireless loss8. Figure 1.22 shows similar results,
for example at second 30 the difference between average RTT and the RTT after a wireless loss is
15ms and at second 32 the same difference is 35ms.

To conclude, the RTT of a packet increases after a wireless loss.

The impact of loss type on the RTT in simulation

To evaluate the impact of loss type (congestion or wireless) on the RTT in simulation, we use the
network and the shadowing-pattern propagation model presented before. We present in this section
the result of two tests, with a strong perturbator and without any perturbator, both of them using
the original TCP-like congestion control under DCCP in NS2.

Figure 1.21 presents the RTT evolution in presence of congestion losses; in this figure no perturbator
is used, hence no wireless losses are present. It can be noticed that the RTT is generally stable
(generally between 0.034 and 0.04 seconds). Also, most of congestion losses have an RTT smaller than
the average, as can be seen at 37, 38 and 39 seconds for example.

Figure 1.22 presents the RTT evolution in presence of congestion losses and wireless losses; in
this figure a perturbator (number 7) for wireless channel is used. It can be seen that the wireless
perturbation makes the RTT unstable (generally between 0.025 to 0.07 seconds). Second, most of
congestion losses appear when RTT is below average i.e. between 53 and 57 seconds, while most of
wireless losses appear when RTT is above average i.e. at 20, 22 and 30 seconds.

The previous two results, given by theory and simulation, lead to the same conclusion:

7Compared to the smallest transmission time (a packet which succeeded at the first transmission and with backoff
equal to 0).

8This is the backoff contribution only; other factors, less important in our study, can modify this value, such as the
transmission itself or other transmissions during backoff waiting.
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Figure 1.21: Impact of congestion losses on RTT.
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Figure 1.22: Impact of congestion and wireless losses on RTT.
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Figure 1.23: Distribution of losses based on RTT intervals.

• RTT for congestion losses are generally smaller than average RTT

• RTT for wireless losses are generally greater than average RTT

Moreover, it appears that the difference of RTT is usually greater for wireless losses than for congestion
losses.

The choice of RTT threshold to distinguish losses

The previous section showed that it is possible to classify losses using their RTT values. This section
further analyses the RTT evolution for congestion and wireless losses with respect to average RTT
and its deviation. It aims to find out a threshold between congestion and wireless losses.

The results are presented as an average of the results of all the 51 tests depicted previously. Figure
1.23 presents the distribution of congestion and wireless losses around the average RTT (avg) using
a step of one tenth of the RTT deviation (dev). First, this figure confirms that congestion losses have
generally RTTs smaller than avg, and wireless losses have generally RTTs higher than avg. Moreover,
most of congestion losses appear between avg − 1.8dev and avg − 1.3dev, and wireless losses appear
between avg + dev and avg + 1.9dev. Using some calculus (figures detailing this are found in [163]),
it can be noticed that for the 51 tests about 90% of the congestion losses have an RTT ≤ avg. It is
about 98% at avg + 0.6dev, and all of them have an RTT ≤ avg + 1.5dev. It can also be seen that
3% of wireless losses have an RTT ≤ avg. The percentage is 8% for RTT ≤ avg + 0.6dev and more
than 60% for RTT ≤ avg + 1.5dev. Finally, it is much more frequent to have congestion losses with
RTT ≥ avg than wireless losses with RTT ≤ avg.

These results show that perfectly classifying all losses using RTT is impossible. However, choosing
a threshold between avg and avg+ 0.6dev can correctly classify the majority of congestion losses and
misclassify only a few wireless losses (between 3% to 8%).

We have tested a threshold of avg and of avg+ 0.6dev. The results were similar, albeit a bit worse
for avg. As the value of 0.6 is chosen somewhat empirically, we cannot advocate that it is the best
value for all the cases. Nevertheless, we claim that the best threshold should be a bit greater than
avg. In the following sections we will use a threshold of avg + 0.6dev.

1.5.5 RELD, RTT ECN Loss Differentiation

The purpose of RELD is to use ECN in conjunction with RTT to prevent network congestion and
to maintain sending rate in case of wireless losses. To differentiate between congestion losses and
wireless channel losses, RELD requires that intermediary routers between sender and receiver be ECN
compatible. For this, it is necessary that the routers implement an active queue management such as
RED (Random Early Detection).

See the beginning of this chapter for information about RED and ECN.
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RELD details

Like our method, TCP-Eaglet [18] uses ECN information. However, it does not deal with losses in Slow
Start phase (the first phase of a TCP connection, where the congestion window increases exponentially
with the RTT) and hence it does not consider the case where a burst of packets arrive to a router
and exceed its queue capacity. In this case, there may be a significant number of ECN unmarked
losses, which might appear even in Congestion Avoidance phase (the long-running phase of a TCP
connection, where the congestion window increases linearly with the RTT) if other concurrent flows
are in Slow Start phase.

Our contribution is that, unlike TCP-Eaglet, RELD takes these situations into account. First,
it makes no difference between Slow Start and Congestion Avoidance phase. Then, contrarily to
TCP-Eaglet, it uses the RTT to remedy the ECN weakness, as shown below.

As ECN marking occurs often before congestion, a responsive sender to ECN can use this informa-
tion to prevent congestion and to differentiate congestion losses from wireless losses. A sender which
reduces its sending rate in response to ECN can avoid congestion in most cases but not all. In fact,
when a burst of packets arrives to the router, its queue might become full. Since the queue average
has not changed much, the router drops packets without marking them. In such cases, losses are
numerous and they often causes an RTT growth.

To sum up, RELD considers that a loss is due to congestion if and only if:

1. ecn > 0
or

2. n > 0 and RTT < avg + 0.6dev

where ecn is the number of packets marked EC (Experienced Congestion), n the number of lost
packets indicated by the received Ack, RTT the current RTT, avg the average RTT and dev the RTT
deviation.

In this manner, RELD works as TCP-like in increasing phases, i.e. in Slow start and in Congestion
Avoidance phases the congestion window will increase as usually. On the other side, when the sender
receives a loss indication it will decrease its congestion window only if the losses are considered by
RELD as a congestion (as described on the above formula). Formula 2 has been deduced from
the results of the previous section. The complexity of formula 2 is constant, like the other loss
differentiation algorithms in related work, because the calculations of RTT, avg and dev are made by
a simple equation using constant values and just two saved values each time.

1.5.6 Simulation results

We have done extensive simulations [163] to analyse RELD threshold and its classification rate, mea-
sure the performance gain of RELD compared to original TCP-like, and compare RELD to TCP-
Eaglet. For this, two scenarios are used: without competition and with competition of another flow.

To have a working environment, we fixed a bug in NS2 so that RED and ECN can be used on
wireless links. For DCCP protocol in NS2, we used the patch written by Mattson [135] and added to
it support for wireless links9.

Validation of the RTT threshold chosen by RELD

In section 1.5.4 an RTT threshold has been chosen from statistical results so that it allow to distinguish
efficiently between congestion and wireless losses. The congestion control protocol used for that was
TCP-Like. The goal of the current section is to validate this choice by using RELD as congestion
control protocol under DCCP and verifying that this new algorithm does not alter the classification.

It should be noted that in the following figures, differentiation is done by a thorough parsing of
the log files. An indeed strong point of using a simulator is that it can precisely tell us where and why
packets are really lost.

9The new patch has been found for a long time at http://eugen.dedu.free.fr/ns2, but was removed when it got
integrated in the NS2 simulator itself. A few researchers contacted me for the patch during that time.
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Figure 1.24: RELD, without competition: distribution of losses based on RTT intervals.
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Figure 1.25: RELD, in competition: distribution of losses based on RTT intervals.

Scenario without competition Figure 1.24 confirms the two conclusions from section 1.5.4: con-
gestion losses have an RTT smaller than average RTT, while wireless losses are generally above average
RTT. Some calculus consolidate the choice of avg + 0.6dev: only 2% of congestion losses are not in-
cluded in RELD formula (have RTT ≥ avg+0.6dev), and about 10% of wireless losses are not included
in RELD formula.

Scenario with competition A concurrent TCP flow is added to the network (figure 1.19), between
s2 as a sender and d1 as a receiver, and it appears twice: from 1 to 20 seconds and from 25 seconds
to 45. Its goal is to create traffic in Slow Start mode (when the queues are likely to become full, and
without ECN notification) several times during the simulation.

Only the results of the 51 tests for the RELD flows are presented in the three figures. Figure 1.25
presents the distribution of losses. First, it shows that fewer congestion losses are gathered to the
left margin of the graphic; in fact, congestion losses between avg − 1.8dev and avg − 1.6dev in figure
1.25 are twice fewer than those of the same interval in figure 1.24 (900 compared to 1800). Second,
congestion losses are more evenly distributed. Third, congestion losses span more to the right, which
means that the loss classification is more difficult. And fourth, as before, most of congestion losses are
at the left and wireless losses are at the right. After doing some calculus, fewer congestion losses (70%)
are included in the RELD formula (RTT ≤ avg+ 0.6dev). Of course, choosing a greater threshold can
reduce congestion losses misclassification, however this will result in a higher wireless misclassification
rate. As for wireless losses, the same RTT distribution as before is noticed, which is normal because
the same perturbators are used.

As a conclusion, RELD threshold allows to classify congestion losses correctly between 80% (in
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Figure 1.26: RELD, without competition: correct classification rate.

case of competition with other traffic) and 98% (in case without competition).

Evaluation of RELD classification accuracy

In this section we evaluate RELD performance through its ability to classify congestion and wireless
losses using the formula which combine ECN and RTT. This performance is evaluated for a wide rage
of channel conditions; from absolutely not to very disturbed. Those conditions are expressed by the
identifiers of the perturbators used for a given simulation. “0” means only perturbator 0 was used,
“234” means perturbators 2, 3 and 4 were used in conjunction, etc.

The classification makes use of several parameters, explained in the following. Suppose that during
a test the following results are obtained: there were 80 congestion losses and 20 wireless losses. Among
the congestion losses, 70 of them are correctly identified as congestion losses, and 10 wrongly identified
as wireless losses. For wireless losses, 5 are wrongly classified and 15 correctly classified. This is
resumed in the following table (c means congestion losses, w means wireless losses):
real 80c 20w

classified 70c 10w 5c 15w

The percentage of correct congestion loss classification is 70/80, and of correct wireless loss classifi-
cation is 15/20. The percentage of total correct classification is the total number of correctly classified
losses divided by the total number of losses: (70 + 15)/(80 + 20).

In the following figures, the real reason for each packet loss (congestion or wireless loss) is taken
from the simulation trace file, and the considered reason for loss is printed by the source of the flow,
which uses RELD classification, from the NS2 source code.

For the scenario without competition, figure 1.26 shows three curves: first one presents percentage
of correct classification for total lost packets including congestion and wireless losses, second and
third show correct classification for congestion and wireless separately. The total correct classification
varies between 85% and about 99% in most cases, and it is about 92% in average. Correct congestion
classification in this scenario without competition is very high thanks to RELD threshold which covers
majority of congestion losses. On the other hand, correct wireless classification rate, while smaller
than congestion one, is high too, varying between 78% and 100%. The number of congestion losses
is very small (up to 600 losses, compared to between 15000 and 115000 sent packets, depending on
the test), which means that the ratio of received to sent packets is very high. In other words this
high ratio is very important for applications with special needs, such as multimedia streaming, since
it avoids the need of packet retransmission methods; moreover, a high number of lost packets leads to
quality degradation.

For the scenario with competition, as previously, a TCP concurrent flow is added in the network,
between s2 and d1. In all tests the rate of correct classification is again very high, around 80% in
average for total and for congestion losses. As a side note, contrary to scenario without competition,
correct classification rate of wireless losses is higher than similar rate for congestion losses.
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Figure 1.27: RELD vs TCP-like, in competition: performance amelioration.

The percentage of congestion and wireless lost packets compared to sent packets is very small again,
and the number of congestion losses is greater than wireless losses, due to the bandwidth sharing with
another traffic.

RELD vs TCP-like

A loss classification method is supposed to make transport protocol perform better in wireless en-
vironment. To verify the performance amelioration brought to DCCP via RELD loss classification
algorithm we compare the number of received packets by receiver when using TCP-like and RELD.
Results are expressed in ratio between the number of received packets by the receiver of RELD and
the same number for receiver of TCP-like. The ratio value indicates the amelioration, equality or the
degradation of TCP-like performance.

The conclusions for the scenario without competition are identical to the scenario with competition,
so we will present only the latter one.

In the scenario with competition, as previously, a TCP concurrent flow is added in the network,
between s2 and d1. Figure 1.27 shows the results of the 51 tests. First, it shows that, except a very few
cases, the ratio received/sent packets is greater for RELD than for TCP-like. Second, the amelioration
is high, with an average of 15% and a maximum of 68%.

Summing up, RELD ameliorates the performance of transport protocol both without and with
competition. Performance gain is higher when wireless losses are higher, and is smaller when congestion
losses are higher.

RELD vs TCP-Eaglet

As mentioned in related work, ECN category, there is also TCP-Eaglet which uses ECN to distinguish
between congestion losses and wireless ones. It is based on a very strong assumption: since ECN is
able to prevent congestion in wired networks, it is also able to distinguish losses. For it, a lost packet
in Congestion Avoidance mode means wireless loss, while an ECN marked packet means congestion.
Our results show that this hypothesis is often not valid, especially in a perturbed wireless environment,
and as such can lead to congestion in the network.

Original TCP-Eaglet was designed for TCP, not for DCCP. However, we are interested in com-
paring our approach with its idea, so we implemented it for DCCP in NS2. In the scenario without
competition, the correct classification rate of TCP-Eaglet, shown in figure 1.28, is very small, about
4.4% in average, most of the losses being classified as wireless. This is already a very low result, so
we do not test its performance in the scenario with competition.

TCP-Eaglet indicates that its parameters must be adjusted to fit their assumption, which could
be one of the reasons of the bad results of TCP-Eaglet. A second reason is that, in wired networks,
an ECN marked packet has a small chance to be lost afterwards. On the contrary, this can arrive in a
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Figure 1.28: Eaglet, without competition: correct classification rate.

wireless network, known to have sometimes a certain number of consecutive losses. RELD copes with
this problem thanks to the other indicator (the RTT). In this case, when marked packets are lost on
a wireless channel, the RTT will increase, and RELD acts like TCP-Eaglet. However, for the latter
losses, as they are congestion losses, their RTT decreases, and RELD considers them as congestion
losses, hence it decreases its sending rate.

This shows that using ECN alone to distinguish losses is not satisfactory. Moreover, RELD sender
reacts to congestion faster than TCP-Eaglet.

1.5.7 Conclusions

This section presented a general method to solve some issues related to low performance of transport
protocols in wireless networks. It showed that congestion control is more efficient on wireless networks
if the loss classification is correctly made between losses due to wireless media and losses due to con-
gestion. We have also shown that ECN can successfully be used with RTT to differentiate congestion
losses from wireless losses. Moreover, our statistical results done by simulations, which use a more
realistic loss error model for wireless networks, confirm that RTT increases in case of wireless losses.
This confirmation is contrary to some studies about loss differentiation. We recommend the use of
RELD for video streaming over wireless networks because the reception rate obtained by RELD is
very high (the majority of packets are received).

1.6 Conclusions

Congestion control is an old research field (TCP [152] appeared in 1980) which still evolves and tries to
adapt to various technologies such as wireless networks and various applications such as small HTTP
flows. There is a numerous literature spanned in various sub-fields, such as optimisation for long fat
networks (i.e. with big BDP, bandwidth-delay product), for wireless networks, for satellite networks,
for video streaming, improvement of flow starting (e.g. starting with 10 packets instead of 2–4) and
many others. My contributions in this field dealt with both network core (packet loss optimisation in
routers) and extremities (loss differentiation), on general computer networks (Internet) and specific
ones (sensor networks). It showed that despite maturity of the field, there is room to improve it.
Results are satisfactory, for example differentiation rate between congestion and wireless losses is
between 80% and 100%, cf. figure 1.26.
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Chapter 2

Adaptive video streaming with
congestion control

2.1 Introduction

As already written in the introduction of the previous chapter, my research team worked on video
transmission when I joined the team. Research on video spanned on video encoding/decoding, video
servers and their databases, video analysis, transmission on network and others. The team worked on
video transmission, so I started to work on this too.

Video transmission is an important research topic. In recent years, the number of videos encoded
in several bitrates has significantly increased to the point that they become accessible to everybody.
Videoconference usage is also increasing, and the quality of video used during videoconference sessions
can vary greatly depending on the encoding quality chosen by the sender. These videos are delivered
to final users using streaming services. Multimedia streaming services over Internet, as well as the
demand for higher quality from final clients are in constant progression. New video standards like
HD and 3D [47] are asking for more bandwidth. On the other hand, smartphones become ubiquitous
nowadays but most of the videos currently available do not the match restrictive capabilities of mobile
devices. According to the last Sandvine report [170], in North America, the video streaming in fixed
internet connections uses about 50% of the downstream bandwidth, and similar results are also found
in other continents. Video is thus the first usage in Internet, and it is very important to make the
best of its use.

Video transmission can be done simply as a classical transfer, and once finished, the user can
visualise it. This forces the user to wait the complete download, which can be a long time. The other
possibility is video streaming, where the user starts to watch the video soon after starting downloading,
during download process itself. Problems arise when the network does not have sufficient capacity to
continuously provide new data to the user. Numerous works address this. Another research field is
when the video transmitted or available is in a format not suitable to the user, for example it has a
resolution higher than the user’s smartphone. Several video flows can also be mixed, for example in a
videoconferencing with several distinct persons. In this case, the work of mixing/transcoding can be
done either by server or by a component inside the network.

Classical video transmission uses a fixed bitrate from the beginning to the end of the transmission.
However, because network bandwidth varies from people to people, the video is better to be sent
at the appropriate rate. Moreover, for the same user the bandwidth can vary during the streaming.
For example, wireless networks use various network technologies with different characteristics, and
they can change over time (interferences, mobility etc.) Another example is networks with shared
bandwidth among several users, which could make the available bandwidth unstable. So we have
on the one hand videos with different qualities available in the network, and on the other hand a
variable network bandwidth to stream them. The current trend in research and in industry is video
adaptation, where bitrate of sent video is changed during the streaming itself. For instance, the new
DASH standard uses HTTP on top of TCP. HTTP is available everywhere, even on phone networks
and on very restrictive computer networks, and currently the connectivity is very important.

41
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Additionally, more and more network applications, for example real-time media like audio and video
streaming, can accept a certain level of losses. If they use TCP (Transmission Control Protocol), they
have to pay the price for full reliability, with great latency. On the other hand, UDP (User Datagram
Protocol) [150] lacks congestion avoidance support, which can eventually lead to congestion collapse,
a situation which fear researchers on transport protocols. RTP (Real-time Transport Protocol) [173],
while being a widely-used protocol for multimedia streaming, is an application protocol; as such, it
is put on top of a transport protocol, such as TCP or UDP, hence it does not cope with transport
protocol problems.

Another promising protocol for these applications is DCCP (Datagram Congestion Control Pro-
tocol), recently standardised as RFC4340 [116]. It can be seen as TCP minus reliability and in-order
delivery of packets, two key points in video streaming, or as UDP plus congestion control. For our
purposes, two interesting points of DCCP are that it allows choosing the congestion control used
during communication and that it uses acknowledgements. Among the currently three standardised
congestion control protocols, TFRC (TCP-Friendly Rate Control) is the most adapted to video stream-
ing [77]. Also, acknowledgement packets give useful information to the sender, such as the lost packets
and ECN (Explicit Congestion Notification) marks.

Choosing a transport protocol with congestion control avoids the above problems. However, this
also means that the video data sending rate is regulated by the network bandwidth, and not by the
application anymore. As the bandwidth is variable, a classical solution is to continuously adapt video
sending rate to network conditions, method called adaptation.

The adaptation can be done in several ways. Usually, the video bitrate is increased or decreased
each time the available bandwidth increases or decreases. Such adaptation, known in the literature
as “rate adaptive video control”, can be done by controlling video parameters such as quantization
parameter, number of frames per second (FPS) and image size [50].

This chapter presents my work on adaptive video transmission using video streaming with conges-
tion control. It can be grouped in three items:

• Propose an initial adaptive streaming architecture using RTP mixer and DCCP, and simulated
with NS2, presented in [123] and updated in [124].

• Propose a method to adapt video to network conditions, called VAAL, presented in [159], and
a generic method to avoid oscillations during adaptation, presented in [160] and with additional
experiments in [161]. The mixed method with four enhancements to VAAL is presented in [162].

• Propose a taxonomy of parameters used in video adaptation, presented in [59].

2.2 Video streaming simulation architecture

2.2.1 Introduction

As written previously, video uses an important part of the bandwidth in Internet. RTP (Real-time
Transport Protocol) and RTCP (Real Time Control Protocol) [173] are standards for streaming mul-
timedia contents. RTP transmits the data while RTCP controls the RTP stream. Between the RTP
server and the RTP client, two intermediate systems can be placed: the mixer and the translator. The
mixer receives RTP packets, possibly changes the data, combines the packets and then forwards new
RTP packets. A mixer can modify the data, for example, it can change the quality of the sound. The
translator forwards RTP packets leaving their synchronisation source identifier intact.

Multimedia content streaming over wireless networks is facing several challenges: mobility, shared,
limited and variable bandwidth. When a client moves, he may change wireless access points (Base
Transceiver Station or WLAN Access Point) and multimedia contents must be redirected as quickly as
possible. As the bandwidth always fluctuates, multimedia contents have to be adapted to the available
bandwidth at a given moment. Moreover, clients use a wide range of multimedia devices and a client
connected to a phone network with a smart phone will not be able to visualise the same multimedia
content as a client connected to Internet with a laptop. This heterogeneity implies that one must be
able to stream a wide variety of multimedia contents adapted to each case.
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Figure 2.1: Mixer model in NS2.

Being able to simulate a video on demand (VoD) architecture, comprising a server, a mixer and
a client, opens up real possibilities for the optimisation and comparison of elaborated strategies in
a real context of flow concurrence. The congestion control used by the video must be TCP-friendly
and allow moderate bandwidth changes, and we used TFRC [93] for that. The originality of our test
bed is that it evaluates the final quality of video streamed into NS2. This is done by integrating new
modules of real content streaming and PSNR (Peak Signal-to-Noise Ratio) calculation into NS2.

2.2.2 Related work

DCCP has successfully been used in video streaming. For example, [202] presents an implementation of
TFRC in Linux, a codec and a video conferencing system with low latency, combining these elements.
It divides the video system in three components: the codec, the DCCP module, and the algorithm
deciding the video quality to use. The variables used for quality changing are: resolution, JPEG
quality and frame rate.

[40] analyses losses in wireless links. The authors propose multiple connections for a video stream
and deduce the following rule: “Keep increasing the number of connections until an additional con-
nection results in an increase of end-to-end RTT or packet loss rate”. Based on the RTT variation,
the number of connections n is increased by α/n or decreased by β, where α and β are constant.

Several categories of video transcoding that modify the bitrate of the streamed video have been
developed [120]. The first one is referred to as closed loop transcoding or Cascaded Pixel Domain
Transcoder (CPDT) [201]. The video is completely decoded, possibly modified and then encoded,
and this is the solution chosen for our mixer. The second category called Open Loop Transcoding
(OLT) [68] do not completely decodes the stream but stops to the DCT phase. This solution saves
CPU time but the resulting quality is not as good as the CPDT solution. A third category is an
intermediate solution that pushes the decoding process deeper than OLT. It is named DCT Domain
Transcoder (DDT) [208] and an implementation has been realised [166].

It is also possible to transcode by changing the resolution of the video [195, 21, 176] or by modifying
the image frequency [200, 41].

2.2.3 Video streaming architecture

The general architecture of our simulation test bed is composed of two main parts: the mixer and the
client.

Figure 2.1 presents the model of the mixer as it has been modelled into NS2. Three kinds of video
data can be used as input of the mixer:

• Own generated data: The mixer generates its own data by using various algorithms. The
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distribution of the various kinds of images (I, P and B) is given by Gismo [105].

• Real data: This mode allows to use real videos in NS2. The packetization is carried out by
the mixer. The packets are sent through the different NS2 modules and the video is really
transmitted between the server and the final client.

• Real packet sizes with dummy data: During a real transmission, the size of packets sent over
the network is analysed and the characteristics of the packets are stored so that they may be
used in NS2.

The input is sent to the core of the mixer, that is to say to the adaptation module, which decides
either simply to forward the stream or to transcode it in order to fit the available bandwidth better.
The packets are sent to the network module which comprises an RTPSession application which manages
the RTP and RTCP agents, and the transport agent, for example, UDP or DCCP.

The client receives the packets from the network, and he can reconstruct the video exactly as if
he had played it. This video is output to a compressed video file which can be compared with the
original video. Finally, the PSNR can be calculated according to see exactly what the effect of losses
or jitter is on the resulting video.

This simulation test bed allows to test different strategies to stream multimedia contents with
various transport protocols. Besides, it also allows to see the effects of the network problems on the
streamed contents clearly. Indeed, during multimedia streaming the lost packets will not have the same
effect on the video quality. Some packets will seriously affect the visual quality of the video whereas
others will not. This difference depends on various parameters like the type of lost packet, the time
the packet is lost in the group of pictures (GOP) etc. In fact, if the last P-frame of a GOP is lost,
the quality will not be affected because, just after this image, an intra image will be decoded. As the
last P-frame of a GOP and the first I-frame of the following GOP do not have any time dependence,
only one frame will be damaged. Another example is when a packet is lost on a P-frame just before
a camera movement. The resulting image will be damaged but the camera movement will delete this
error. That is why it is necessary to calculate the PSNR and not just to count the lost packets to
evaluate the resulting video quality and this is the aim of our test bed.

The mixer

An RTP mixer [173] receives RTP packets from one or more sources, possibly changes the data format
(for ex. on-the-fly transcoding), combines the packets in some manner and then forwards a new RTP
packet. It is located the closest to the client in order to react as soon as possible to the variation of
the bandwidth. As the clients are connected to a wireless network, the mixer should be ideally located
in the bridge between the wired and the wireless network.

The various modules of the mixer are shown in figure 2.2:

• Client side: This module allows the mixer to be connected to the video servers.

• Server side: This module consists of the implementation of a complete RTP/RTSP server. The
mixer is seen like a server from the clients’ point of view.

• Buffer: The buffer is used to store a certain number of images before beginning the streaming
to the client.

• Transcode/reassemble: This module is the element which makes it possible to adjust the quality
of the stream according to the various constraints which act on the transmission. One of the
major points of this module is the choice of changing the policy of adaptation.

• Decision: This module takes into account all the parameters which are given to it: information
feedback from the server module (RTCP reports, for example) or information on the available
bandwidth coming from the network module. Afterwards, it chooses the most appropriate video
for the client according to the available bandwidth and the available video quality from the
servers.
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Figure 2.2: Internal architecture of the proposed mixer.

A typical session works as following:

1. A client connects to the mixer by the intermediary of the server module and requests the visu-
alisation of the video.

2. The request is transmitted to the decision module which will ask the global architecture for the
available quality for the required video.

3. The decision module will choose the video which is the most adapted to the client’s characteristics
and to the constraints of the network.

4. The client module requests the chosen video from the selected server. In the best case, a video
the quality of which meets the needs, is directly available in the system and no transcoding or
adaptation is necessary. If it is not the case, the decision module chooses the right transcoding
method.

5. As soon as the stream is received by the server module, it is sent directly to the client.

6. If a quality change is necessary, the decision module asks the video server if a more adapted
video is available. But in order to adapt the quality as soon as possible, it asks the transcoding
module to change the quality of the stream while waiting for a new one.

7. As soon as the new video is available, the mixer stops the transcoding and streams the new
video.

2.2.4 Simulation results with real data

The Network Simulator [140] version 2.28 is used for simulations. We use the shadowing model, where
packets are always received for d ≤ s1, always lost for d ≥ s2 and received with a probability for
s1 < d < s2. A wired streaming video server, an access point (AP), and a mobile streaming client are
created for the simulation. Note that both AP and mobile use retransmission times. This simulation
corresponds to a man walking on the street while watching News on Demand (NoD). The mobile
moves according to the following scenario. Initially, it is at the AP. At t=0 s is uses a linear movement
and goes far away the AP so that at t=100 s it is at 300 m. It stays motionless from t=100 s to
t=150 s. At t=150 s it goes nearer the AP using a linear movement and same speed so that it arrives
at AP at t=250 s. Between the stillness time, the mobile is located in the edge of the covered area of
the AP, where most of the retransmissions appear.
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Figure 2.4: PSNR comparison results.

We transfer three times the same video with the same movement scenario. Only the transport
protocol differs from one simulation to another. First, we use RTP over UDP, the original video
streaming transport protocol. Then we use DCCP/TFRC with video adaptation and at last we
propose to study: DCCP/TFRC with RTT modification.

In figure 2.3, during the 250s of RTP/UDP video transmission, 2063 packets are lost. With
DCCP/TFRC, this number is reduced to 180 packets only. In the UDP case, most of these losses
appear during the stillness time, when the available bandwidth is smaller than the video bitrate.

To compare the videos received by the client, we use the Peak Signal-to-Noise Ratio (PSNR),
commonly used for video quality estimation. For each simulated transport protocol, the original video
and the received one are compared in figure 2.4. Because of the TFRC and the video adaptation, the
video read by the client on his mobile player has a better quality.

Detailed information about these results is given in [124].

2.2.5 Conclusions

This section proposed a complete video streaming architecture which includes a mixer combining a
server and a client, and a mobile client. This model can help to optimise and to implement a dedicated
congestion control protocol.

The measured improvements of our solution compared to the classical video streaming one are
significant. Two types of results have been presented, for the network (throughput and packet loss)
and for the visualisation of received video (PSNR). The PSNR results of our solution is really better
than the classical solution RTP/UDP.
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2.3 An oscillation-free method to adapt video to network conditions

2.3.1 Introduction

As already written, for video streaming an adaptation of the video to the network characteristics is
very important. A cooperative approach between application layer and transport layer can improve
the video quality perceptible by the final user.

The adaptation method proposed here (VAAL, Video Adaptation at Application Layer) uses trans-
port protocol buffer overflow as a solution to find out the available bandwidth and to adapt the video
content bitrate to the discovered bandwidth. Each n fixed seconds, the server application computes
the number of packets which failed to be written to the socket buffer. This number is used to control
the video bitrate afterwards. A high number means smaller bandwidth and smaller bitrate. Zero error
indicates either a stable or a greater bandwidth, so the bitrate of sent video could be increased. In
this way, the bitrate of the watched video is fixed during each period of n seconds, and can change
only between periods.

Changing the bitrate as suggested above allows to optimise the application part of the video
streaming. For yet better results, these methods could be coupled with other methods. For exam-
ple, a well-known problem with losses in wireless networks is that they cannot be differentiated from
congestion losses, hence the sender reduces the throughput while it should not [163]. Another opti-
misation on the network part useful on lossy links is the FEC (Forward Error Correction) ([182] for
example). Also, video-specific network techniques allow for example to prioritise [90] or retransmit [99]
only important packets (I packets in an MPEG-encoded video) on the server side. A commonly-used
such technique is ALF (Application-Level Framing), which cuts intelligently video data in packets
(avoiding for example to put one small video frame in two packets, which would be more sensible to
packet loss); this is to be used in conjunction with the MTU (Maximum Transmission Unit) of the
network.

It is important to understand that our method is only a small part in the optimisation chain for
video streaming, which can be used and is beneficial independently of the other methods presented
above. As such, we consider in this work only network parameters and network performance criteria.

The rate control is not a new idea to ameliorate video transmission. In the literature, there are
a multitude of papers about this topic. Most of them were written 5–10 years ago, where solutions
using new/modified transport protocols were used (such as [111]), which are not deployable in reality
and risky from the congestion control point of view. Moreover, only few of them use experiments. The
only papers we have found about rate control over DCCP are [94, 121], and they use simulations1.
A new trend in adaptive video is also to use HTTP over TCP, such as the recent ISO MPEG DASH
standard [100], which has advantages, but also drawbacks, such as, in videoconferencing, mandatory
100% reliability given by TCP use.

In this context, this is the first time that the buffer overflow method is analysed for video adaptation.
Moreover, this is, to the best of our knowledge, the first paper which uses DCCP in real experiments of
video streaming in wireless networks. Our solution is very simple to deploy, as only the application on
the sender side needs to be modified (does not need to modify the receiver, nor the transport protocol).
As a corollary, our method works with any transport protocol which has a congestion control.

The scope of our method is unidirectional and bidirectional communications, such as VoD (Video
on Demand) and videoconferencing. Our method applies ideally to videoconferencing, because it is
delay-sensitive and it consists mainly in a few simple additions/divisions per second and updating
the value of the quantisation parameter; also, there is no need of support, such as caches, from CDN
(Content Delivery Networks).

1There are serious concerns about simulation results, such as “around 50% of the papers appeared to be. . . bogus” and
“who has ever validated NS2 code?” (from September 2005 archives of the e2e-interest mailing list). This is especially
true for wireless link simulation.
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Figure 2.5: Example of available bandwidth vs available bitrates.

2.3.2 Advantages of video adaptation over static encoding

Video adaptation is useful when the available bandwidth varies during transmission. This appears
in two cases: either the network bandwidth itself changes, or the bandwidth available for the flow
changes.

The first case appears in wireless networks, where data rate changes according to radio link quality,
and the bandwidth varies often. Data rate decreasing has multiple reasons:

1. interferences due to environment or to presence of another equipment working on the same range
of frequencies, which decrease the signal to noise ratio for a short period;

2. mobility which, depending on the distance between the mobile and the access point, leads to
signal attenuation and might also cause dynamic rate scaling.

This case also appears when an ISP (Internet Service Provider) changes dynamically the bandwidth
allocated to a user. Indeed, with the increasing number of streaming services on Internet, more and
more traffic is generated, which leads ISPs to voluntarily limit user bandwidth even during a transfer.
We simulate this case by using a traffic shaping model as described in experiments section.

The second case is when a variable number of flows share the same path. The bandwidth available
for video streaming is also variable for each flow. We illustrate this case by using a different number
of concurrent flows as described in our experiments section.

For these cases, the adaptation helps to take advantage of all the available bandwidth or to avoid
numerous lost packets.

Case study

Classical video transmission uses the same bitrate from the beginning to the end of the transmission.
For comparison, we give some theoretical results based on a bandwidth between sender and receiver
which changes according to figure 2.5. It simulates the limits imposed by ISPs, but also (on a larger
scale) the dynamics of the available bandwidth between two hosts on a network. As already known,
many factors contribute to this dynamics, for example when a user goes further or nearer the access
point in a wireless network, or when more or less packets are injected into the network. The bandwidth
changing pose problems to the video transmission because when bitrate is smaller than bandwidth,
the network is underutilised, and when bitrate is higher than bandwidth, packets will be lost.

The figure presents the available bitrates of a hypothetical video: 512kb/s (Q0), 1Mb/s (Q1),
2Mb/s (Q2) and 3Mb/s (Q3). Also, as shown in the figure, during the 180 seconds of the video
transmission the bandwidth changes three times: 600kb/s for the first minute, where 512kb/s video
bitrate is the best choice; 2300kb/s for the second minute, where only quality of 3Mb/s should not be
used; and 3Mb/s for the last minute, where any video quality could be used.

In this example it can be noticed that none of the four available bitrates is suited for the whole
transmission:
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Quality Sent pkts Received pkts Lost pkts
Q3 69120 45312 34.4%
Q2 46080 35328 23.3%
Q1 23040 19986 13.3%
Q0 11520 11520 0%
Ideal 42240 42240 0%

Table 2.1: Number of sent and received packets for each static bitrate and the ideal case.

1. Q0 is good for the first minute but choosing it will prevent the user from fully utilising the
bandwidth for the remaining time.

2. Q1 is not good for the first minute and has the same drawback as 512kb/s bitrate for the
remaining time.

3. Q2 is not good for the first minute; it could be chosen for the second minute, and has the same
drawback as 512kb/s bitrate for the remaining time.

4. Finally, Q3 is not good for the first and second minutes; it could be chosen for last minute.

In order to compare the qualities, we compute for each of them the number of sent packets, the
number of received packets and the percentage of lost packets. The results are given in table 2.1. For
example, for a packet size s=1024 bytes, quality Q1 information is obtained like this:

• 1Mb/s / (s=1024*8b) * (t=180s) = 23040 sent packets;

• 0.6Mb/s / (s=1024*8b) * (t=60) + 1Mb/s / (s=1024*8b) * (t=120) = 19968 received packets
(Q1 is greater than available bandwidth for the first 60 seconds, so only 600kb/s are received
from the 1Mb/s sent);

• 23040 – 19968 = 3072, i.e. 13.3% lost packets.

The ideal case appears when the bitrate is adapted to available bandwidth, i.e. 512kb/s for the first
minute, 2Mb/s for the second minute and 3Mb/s for the third minute. It leads to no lost packets and
maxb*time sent and received packets, where maxb is at any moment the maximum bitrate less than
or equal to the bandwidth.

First, this table confirms what we said before: no static bitrate is suitable for the whole transmis-
sion. Second, the adaptation is clearly better than each of the static bitrates. The only quality with
no lost packets is Q0, but it is worse than ideal case, since it has only 11520 received packets compared
to 42240 for the ideal case. Note that the number of received packets for Q3 is higher than the ideal
case, since it leads to lost packets; e.g. for the first 60 seconds, the ideal case sends at 512kb/s and
receives the same, while Q3 sends at 3Mb/s and receives 600kb/s.

Finally, it is difficult, or even impossible, for the user or some program to decide at the beginning
of a video transmission which static bitrate is the best to use during the whole transmission. On the
contrary, the adaptation is automatic, i.e. it does not involve any action from the user.

2.3.3 Related work

To avoid repetition, methods doing video adaptation are presented in related work section 2.4.4.

2.3.4 VAAL, video adaptation algorithm

To be able to know whether to increase, maintain or decrease the video quality, the sender application
should have some information about the available bandwidth. In our proposed method VAAL, the
bandwidth availability is measured through the number of packets which failed to be written to the
transport protocol socket (buffer overflow). The higher the number, the less the available bandwidth.
Regularly, VAAL computes this number of packets and changes the video bitrate accordingly. VAAL
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Figure 2.6: Video data flow on the sender.

requires a transport protocol with a network congestion control, no matter which one. It uses a simple
algorithm. Finally, it is made at application layer and does not need any change to system kernel.

Note that while doing adaptation, the sender should try to minimise the quality fluctuation. It is
not preferable, in our opinion, to change quality at each sent packet but on a longer scale (each 100ms,
each 2sec or each I image for MPEG video for example). However, some codecs may have constraints
on the time when the quality changes.

VAAL explanation

As shown in figure 2.6, the server application writes packets to the transport protocol socket buffer at a
rate equal to the current video bitrate. The transport protocol has a congestion control which gives the
rate at which the packets leave the socket buffer (and afterwards the machine, and enter the network).
VAAL goal is to adjust the video bitrate to the rate estimated by the transport protocol. Thus, VAAL
algorithm is divided in two steps: discovery of the network conditions (available bandwidth based on
buffer overflow) and quality selection (the action to be done). These two steps are executed for each
period of n fixed seconds.

The discovery of network conditions works as following. When the application generates packets
at a higher rate than the transport protocol can send to lower layers (network), packets are buffered.
If the buffer becomes full, the new packets generated by application will fail to be written (buffer
overflow). Thus, VAAL monitors the available network bandwidth through the transport protocol
socket buffer overflows when the application tries to write a packet in it. During each period, VAAL
computes the percentage of these failed packets, which we will call write failure percentage (WFP).
Consequently, WFP is an indication of the network conditions: the bigger the WFP, the less the
available bandwidth.

The quality selection (adaptation) works as following. At the end of each period, VAAL reads the
WFP (given by the first step) and acts like this:

• If WFP is null (no packets failed when written to buffer) VAAL chooses the next higher quality
level (higher bitrate) unless the quality is already the highest.

• Elsewhere, if WFP is tolerable (smaller than 5%), the quality is maintained at the same level.
ITU.T G.1070 [102] recommends that the end-to-end IP packet loss rate in video streaming
should be less than 10%. Hence, we chose a threshold of 5% of packet loss rate at the sender
buffer (WFP < 5%), the other 5% being left to handle the network losses.

• Finally, when WFP is greater than 5% and unless the lowest quality is already in use, VAAL
searches for the highest quality q′ which fulfils:

q′ ≤ q(1−WFP)r (2.1)

where q is the current quality. In this formula, q(1−WFP) represents the bandwidth available
for the period which has just ended, while r > 0 is a parameter (aggressiveness) which allows
us to choose a quality with a bitrate different than the available bandwidth.

Normally, the next quality q′ should be smaller than q, but depending on the aggressiveness r,
the quality could remain the same or even increase.

As mentioned before, VAAL requires a transport protocol with a network congestion control, no
matter which one. Also, VAAL is especially useful in video conferencing (video on-the-fly) because
there is no need to re-encode the video, just changing the encoding rate.
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Implementation

We have implemented VAAL video adaptation at the application layer on a GNU/Linux machine
with 2.6.35 kernel (without any change to system kernel). The period of time n is 2 seconds. Packets
which failed to be written in the socket buffer are deleted (i.e. they are not stored so that they can be
retransmitted later), in order to reduce delay. The program uses DCCP as transport protocol together
with TFRC as congestion control (DCCP was implemented in the kernel a few years ago).

Once VAAL was implemented, we also studied four enhancements. The first three show better
performance while the last one gives similar results.

Initial bitrate Starting the connection with a high bitrate will cause transport protocol buffer
to drop a high number of generated packets, which has a negative impact on video quality at the
beginning of each video. “Slow-start” solutions for the bitrate at the beginning of a video streaming
have already been proposed, but they are not generally applicable, because the adaptation can often
be done only at coarse grain (e.g. each 2 sec.) So in VAAL we took a simple and general solution:
we decided not to start the transfer with a high bitrate but with a small one. Our choice was also
not to use the smallest bitrate because it will take a few seconds to reach the highest bitrate if the
bandwidth is high enough to support it. In our current implementation of VAAL, the initial video
bitrate used is 1Mb/s.

WFP computation interval WFP is the parameter used by VAAL to estimate the available
bandwidth. We have considered two ideas for the interval of time on which WFP is calculated: use
either the last RTT (Rount Trip Time), or the interval of time for the last p sent packets; p should not
be smaller than 20, in order to allow a percentage of failed packets (WFP) less than or equal to 5% to
appear, cf. the quality selection above. However, because the RTT may be very small (depending on
network topology) and the number of packets during this period could be very small too, we choose
instead a hybrid solution using both ideas, where the interval of time is max (last RTT, last 20 sent
packets).

r aggressiveness value r represents the aggressiveness of the transfer. As previously shown (equa-
tion 2.1), the next quality chosen q′ is the highest available quality which verifies q′ ≤ wr, where w is
the bandwidth. If r = 1, the next quality will be at most w, while if r = 1.1 for example, the next
quality could be as great as 1.1w. However, in this latter case it does not necessarily mean that the
quality will always be greater than w; if for example available qualities of the transmitted video are
increasing as powers of 2 (512kb/s, 1Mb/s, 2Mb/s etc.), then the highest available quality smaller
than or equal to 1.1w is somewhere between 1.1w/2 and 1.1w, with an average of 1.1w∗3/4 = 0.825w,
which is smaller than w. On the other hand, if all qualities are available (i.e. supported by a codec
during an on-the-fly encoding), then the next quality will always be near or equal to 1.1w, which is
greater than w, hence not a good solution.

As an numerical example on the influence of r to the chosen quality, let’s suppose that the available
bitrates are the ones above (512kb/s, 1Mb/s, 2Mb/s etc.), r is 1.1, and that in some point of time the
current bitrate is 1Mb/s and the measured WFP is 7%. According to equation 2.1 in previous section,
q′ ≤ 1Mb/s ∗ (1− 0.07) ∗ 1.1, that is q′ ≤ 1.023Mb/s. This means that the quality of the flow remains
at 1Mb/s in that point of time. However, if WFP was 10%, then q′ ≤ 0.99Mb/s and the quality would
decrease to 512kb/s.

As a conclusion, r should be chosen carefully and be based on the available qualities of the video:
the higher the bitrate ratio between consecutive qualities, the higher the r value. In the current version
several values for r have been tested and r = 1.1 is used.

Real vs theoretic bitrate It is known that sometimes encoders cannot encode a video to a specific
bitrate, i.e. the bitrate of the video generated is not equal, but (more or less) near the bitrate asked.
We denote by qt the theoretic (or asked) bitrate for a video and by qr the real (or generated) bitrate.
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As previously specified, when VAAL is in quality selection step and after WFP calculation, next
quality q′ (for the following 2 seconds) is chosen so that q′ ≤ q(1 −WFP)r (formula 2.1), where q is
the quality used in the past 2 seconds. q and q′ can have two different meanings:

• For q′ (in the future): The bitrate for the next 2 seconds can sometimes be predicted (for
example for video streaming using pre-stored files), sometimes not (for example for interactive
video conference, when the codec is not very precise). If prediction is possible, q′t or q′r can be
chosen, otherwise only q′t can be chosen.

• For q (in the past): At any moment, the real bitrate qr used for past 2 seconds is available.
However, the theoretical bitrate qt used 2 seconds ago exists only if in the previous step (q′, in
the future) it was chosen.

Since q′r is not available for any kind of video transmission, we prefer to choose q′t for VAAL. There
is now a choice between qt or qr; in the current version both values have been tested and they gave
similar results, and we decided to use qt for next quality decision.

2.3.5 ZAAL, generic zigzag avoidance algorithm

A video adaptation method such as VAAL presented previously can sometimes lead to a continuous
switching between two qualities: one smaller than available bandwidth and the second greater. For
example, if a user is connected to Internet via a 2.5Mb/s link and the video is available in 2 and 3Mb/s
qualities, then an adaptive streaming algorithm will constantly switch between these two qualities.
Obviously, the best solution would be to stay with 2Mb/s much more time before retrying 3Mb/s
quality. Since the adaptation algorithm does not know when the available bandwidth could be larger
than 3Mb/s, it should retry a superior bitrate from time to time. This constant change induces what
we call ZQS zigzag quality switching problem (the zigzags are also called oscillations). We noticed
this phenomenon in our first experiments (see figure 2.9(a) for a clear example, where during the first
minute the video bitrate is continuously toggling between 0.5 and 1 Mb/s).

If this issue is already known (see [4] for instance), only few papers treat it, and they do not solve
it completely. For example, in [136] the receiver uses a back-off timer for each layer of the video. If
a level led to lost packets, the receiver goes back to previous level and the timer for the level with
losses is multiplicatively increased. Authors of [71] present a way for smoothing sent video bitrate
and reducing the frequency of video quality changes. The main idea is that the application does not
switch to a higher video quality until the sender is certain that the video will continue playing even
after a reduction of the congestion window. A metric to evaluate the jerkiness of a video, given by
the number of quality changes, is given in [73]. It uses a formula to calculate an effective frame rate
for each video. This formula is used to limit the number of quality changes for each defined window
during the transmission.

In this section we introduce a simple, easy to implement and scalable solution, called ZAAL (Zigzag
Avoidance Algorithm), to this problem (for detailed information the reader is referred to [161]). We
present also the integration of ZAAL in the method of video adaptation at application layer on the
server (VAAL). VAAL behaves as explained in section 2.3.4 except that when the quality is to be
increased (in the quality selection phase), VAAL consults ZAAL for whether a superior bitrate is
allowed or not. If ZAAL decides that the increase does not lead to zigzag, then VAAL increases the
quality; otherwise, VAAL maintains the current level.

Note that ZAAL is not an adaptation method. It is used only to prevent an adaptation method from
frequently switching the video quality. The only information ZAAL needs comes from the adaptation
method, whether some bitrate causes lost packets or not.

Zigzag-avoiding algorithm overview

ZAAL algorithm works by avoiding constantly using bitrates higher than the available bandwidth.
For that, it maintains an successfulness value for each bitrate, called successfulness in the following.
When the adaptive algorithm considers to increase bitrate (and only in this case), ZAAL checks if
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the successfulness of the higher bitrate is lower than a threshold, called β; if this is the case, a higher
bitrate cannot be chosen. Otherwise said, application uses a higher bitrate i only if its successfulness
Si > β. After this process, the successfulness is updated.

More precisely, ZAAL algorithm uses the successfulness value each time an adaptation period ends
(e.g. each 2 sec. in case of VAAL). Successfulness value is calculated separately for each bitrate (with
different weights), denoted by Si, which indicates if bitrate of index i can be used for the next period or
not. As such, this value expresses application last attempts to use the corresponding bitrate. In brief,
when a bitrate generated failed packets to the transport protocol buffer, corresponding successfulness
value is greatly reduced; when a bitrate was successful, the successfulness value is greatly increased;
finally, when a bitrate has been used for a long time, the successfulness value corresponding to the
higher bitrate is slowly increased. As a general rule, the smaller the successfulness value, the more
the corresponding bitrate caused failed packets and application must avoid using it.

The successfulness Si (where i is bitrate index) of each bitrate, which changes according to the his-
tory of that bitrate, is calculated using an EWMA algorithm (Exponential Weighted Moving Average).
Using EWMA allows to give greater weight to recent history compared to older history, since obvi-
ously current bandwidth is better expressed by recent bitrate usage than by older ones. Additionally,
different weights are used, based on the bitrate involved.

At the beginning of a video transmission, all Si values are set to 1. Then they are calculated each
time the application wants to adapt the video bitrate to the available bandwidth, using the following
general formula:

Si = (1− α/d)Si + s(α/d) (2.2)

where:

• s is the successfulness at the time of measurement (the current “observation”) and can be either
0 or 1. 0 value is used when the bitrate did not give good results (hence its successfulness value
will decrease). 1 value is used when the bitrate gave good results, either because the bitrate
did not cause failed written packets, or because the bitrate was not used recently (hence its
successfulness value will increase).

• α is the degree of weighting increase/decrease, a constant smoothing factor between 0 and 1. A
higher α discounts older successfulness values faster.

• d is a division factor allowing to speed up or slow down the value increasing depending on the
bitrate involved. In our algorithm, d has three values: 1, 2 and 4. For s = 1, the greater the
d, the slower the increasing of the Si value. The value of d depends whether the application
increases, maintains or reduces bitrate.

S values are arithmetic reals between 0 and 1. They can change in three cases:

1. First, when the application increases the video bitrate, i.e. the new bitrate k is higher than the
actual one j. This appears when the application does not sense lost packets for a while with
actual video quality. In this case S should increase (s = 1) for all bitrates i lower than or equal
to the current bitrate. Increasing speed must be high (d = 1). So:

Si|i≤j = (1− α)Si + α (2.3)

2. Second, when the application maintains the bitrate. This happens either when some packet
losses occur but their rate is acceptable to maintain the current quality j, or successfulness of
the higher bitrate k (Sk) is low and application avoids using it. S value increases for all qualities
but with different division factor values (different speeds). So:

• d = 1 and s = 1 (big increase) for all bitrates i lower than the current one j:

Si|i<j = (1− α)Si + α (2.4)
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• d = 2 and s = 1 (small increase) for current bitrate j:

Sj = (1− α/2)Sj + α/2 (2.5)

• d = 4 and s = 1 (very small increase) for the bitrate k = j + 1 higher than the current
one j:

Sk(k=j+1) = (1− α/4)Sk + α/4 (2.6)

3. Third, application decreases the video bitrate. This appears when the available bandwidth is
not enough anymore for the actual bitrate (i.e. bandwidth decreases during the current period),
or when the application tries a bitrate higher than the bandwidth. In this case, average value
must be reduced for the current bitrate j, other bitrates average values do not change. Hence,
s = 0 and d = 1 (big decrease). So:

Sj = (1− α)Sj (2.7)

In our experiments we intuitively set α = 0.3 and β = 1 − α = 0.7. Other values were analysed
but either they lead to high number of adaptation iterations for the algorithm to converge, or they
minimise its effects.

Discussion

We present in this section some characteristics of zigzag-avoiding algorithm. To simplify results, we
use α = 0.3 and β = 0.7. We can notice the following:

1. At the beginning, average values are set to 1. They are greater than β = 0.7, so there is no
restriction using any bitrate, i.e. application is authorised to use all bitrates.

2. Studying the decreasing phase of the algorithm we can notice:

• As mentioned previously, when a bitrate is greater than the available bandwidth, application
avoids to use it for a while by decreasing its successfulness average value. Based on equation
2.7, the first time this occurs, Si = 1 − 0.3 ∗ 1 = 0.7. Hence, a bitrate which causes failed
writing packets cannot be used two consecutive times.

• The smallest S value for a bitrate i can appear when it is used with Si = 0.7 + ε and it
leads to failed packets. So, its new S value is equal to Si = 0.7 ∗ (0.7 + ε) = 0.49 + ε.

• A higher bitrate does not necessarily mean a smaller S value. When reducing an S value
for a bitrate i, higher bitrates do not change.

3. Studying the increasing phase of the algorithm we can notice:

• The maximum number of times ZAAL prevents an application to increase bitrate occurs
when the higher bitrate k has the minimal S value of Sk = 0.49 + ε (see previous point)
and ends when Sk becomes > 0.7. Using equation 2.6, this corresponds to 7 unsuccessful
attempts by the application for the higher bitrate k, followed by an 8th successful attempt.
Figure 2.7 shows the evolution of this value: there are 7 unsuccessful attempts between
0.49 + ε and a value greater than 0.7.

• S values between 0.7 and 1 are only possible when the bitrate does not cause failed packets
in two cases: it increases slowly beyond 0.7 when the quality is stable (see equation 2.5), or
it increases quickly beyond 0.7 when higher qualities are possible (see equation 2.4).

4. Finally, using an exponential average rather than a linear average allows to remember past values
for a longer time when increasing average values S, and to give more weight to recent history
than to old history.

ZAAL is a simple and easy to implement algorithm, consisting of 3 if clauses with a loop over all
bitrates inside each clause. It is also scalable, since it has a linear complexity in number of bitrates
(a loop on all bitrates), and also in number of clients (ZAAL is executed independently for each of
them).
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Figure 2.7: Successfulness average increasing during the biggest period of time.

Figure 2.8: Network topology used for experiments.

2.3.6 Experimental results

Network topology

Figure 2.8 shows the real network used to realise experiments with the program presented in the
previous section. The video streaming uses a real video of 180s, available in four qualities 3Mb/s,
2Mb/s, 1Mb/s and 512kb/s, as mentioned before.

Three series of tests are done. For the first series (traffic shaping series), just one flow is present
at any moment during the video transmission, which can thus use all the available bandwidth. On
the other hand, the output bandwidth of the shaping machine is changed three times to simulate a
variable bandwidth: 600kb/s for the first minute, 2300kb/s for the second minute, and traffic shaping
was stopped for the last minute (hence the output bandwidth is the original wireless bandwidth)
(see figure 2.5). For the second series, two numbers of concurrent flows are present during the whole
transmission: five and ten flows (called in the following flows without gap series). In fact, five flows
at maximum bitrate are comparable to the bandwidth of the network (5*3Mb/s = 15Mb/s, which is
about the bandwidth provided by a classical 54Mb/s wireless network), while 10 flows clearly exceed
the bandwidth. In the third series, a various number up to twelve flows are present at the same time.
Each flow starts 10 seconds after the beginning of the previous flow, except the first one which starts
at time 0 (called in the following up to twelve flows with gap series).

During experiment execution, all the flows use the same algorithm (i.e. all of them use adaptation,
or all of them use some fixed quality). The series above consist in executing the same experiments
several times. First series has ten repetitions, and second and third series have five repetitions. Note
that there is no retransmission for lost packets in all our tests (as given by DCCP).

Results

Many experiments have been done [56]. This section presents only a summary of them.

First we confirm that ZAAL reduces indeed the number of oscillations. Figure 2.9 presents the
results of one flow in case of traffic shaping. The x-axis represents the time from 0 to 180s, the duration
of a video transmission, and the y-axis shows the video bitrate (VAAL with or without ZAAL).

We also investigate how ZAAL affects the transmission performance, namely the number of received
packets and the number of lost packets. Table 2.2 presents numerical results of the experiments. It
shows that using ZAAL, even if sometimes the number of received packets is lower, does indeed reduce
the rate of lost packets while maximising the use of the bandwidth.

We pass now to VAAL+ZAAL (ZVAAL) method. First, we confirm that the bitrate adaptation
takes well into account the DCCP buffer feedback (quality variation). As presented before, every two
seconds ZVAAL looks at the write failure percentage (WFP) of DCCP buffer to decide if it has to
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Figure 2.9: Quality adaptation for one flow in case of traffic shaping (using the same traffic shaping).

Traffic shaping 10 concurrent flows
Method Sent pkts Rcv pkts Lost pkts Sent pkts Rcv pkts Lost pkts
Without ZAAL 47795 42043 5752 (12%) 41191 32307 8884 (21%)
With ZAAL 43548 39865 3683 ( 8%) 36713 32477 4236 (11%)

Table 2.2: Number of sent and received packets (average of all flows) with and without ZAAL.

increase, maintain or decrease its bitrate. We present here results for one flow in traffic shaping. For
better visualisation, we show write success percentage, which is simply 1 – write failure percentage
(i.e. 1 –WFP). The result of this test is shown in figure 2.10. As expected, during the first minute,
where the bandwidth is limited to 600kb/s, ZVAAL keeps the bitrate at the lowest quality (512kb/s)
while trying to sense a higher bitrate (1Mb/s) from time to time, e.g. at seconds 24 and 42. During
the second minute, where the bandwidth is limited to 2.3Mb/s, ZVAAL discovers the new available
bandwidth and uses most of the time a video bitrate between 2 and 3Mb/s (higher quality). In the
last period the shaper is switched off, and ZVAAL sends the highest bitrate (highest quality). The last
minute shows also that when bandwidth is higher than the highest quality, switching among qualities
does not occur, hence ZVAAL is comparable to static transmission of the highest quality.

Further analysis of this figure confirms the useful properties of zigzag avoidance ZAAL algorithm.
First, application waits for at least 2 periods of time before trying a bitrate which has recently caused
losses (e.g. at the beginning, 1Mb/s did not work between 0s and 2s, hence it was retried not at 4s,
but at 6s). Second, when a bitrate causes losses for many consecutive times, application waits more
and more time to retry it (e.g. 1Mb/s at 0s, then at 6s, afterwards at 24s, and finally at 42s). Third,
the maximum period during which the video quality was prevented to increase is 16s. (e.g. the first
unsuccessful attempt finishes at 26s followed by the next successful attempt at 42s); during that time
there were no losses (bandwidth much higher than bitrate), however ZAAL correctly prevented the
bitrate increasing.

Next, in order to find out if adaptation is useful, we compare ZVAAL with the same application
(using DCCP) but without adaptation (i.e. static encoding). We recall that our method optimises the
network part of a video transmission, and can be used in combination with other video optimisation
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Figure 2.10: Quality adaptation for one flow in case of traffic shaping.
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Figure 2.11: Number of concurrent flows at any moment for twelve flows with gap of 10 sec.

methods. As a consequence, the metrics used are the number of received packets and the number of
lost packets. We assume that if a new method is able to maximise the number of received packets
while minimising the number of lost packets, it will ameliorate the received video quality. The results
for ZVAAL are taken from the tests done before. For DCCP without video adaptation, the same
three series of experiments have been done, separately for each of the four qualities (Q3=3Mb/s,
Q2=2Mb/s, Q1=1Mb/s and Q0=512kb/s). In the following graphics there are ten curves, which give
the number of sent and received packets for each streaming quality: Q0, Q1, Q2, Q3 and ZVAAL (in
order to distinguish them more easily, the curves for sent and received packets for each type use the
same point style). Note that, even if all the curves are put on the same graph, the execution is done
at different times. Also, even if the curves use lines for better visualisation, the flows and repetitions
(on x-axis) are independent.

In this series of tests, up to 12 concurrent flows compete for the network bandwidth. This allows to
compare the performance in a dynamic and more realistic situation where the number of flows varies
over time. As a consequence, the best static bitrate cannot be known in advance, at the beginning of
the transmission. This series of tests also mimics some characteristics of short lived requests/answers
of the current Web, for example in these tests flows appear one after the other at the beginning, and
disappear one after the other at the end of each test.

As already specified, there are about 10 seconds of gap between the beginning of each two con-
secutive flows. Figure 2.11 presents the starting time of the 12 competing flows and the number of
concurrent flows at any time; for example flow number 7 starts at second 60, and there are 6 concurrent
flows between seconds 50 and 60. Adding 180s to the start time gives the end transmission time for
each flow, e.g. end time of flow 7 is 60+180=240s. There is also a blurred zone to indicate theoretically
how many concurrent flows at highest quality (3Mb/s) the bandwidth can accept (4.5–6 flows). It can
be noticed that the flows with the highest degree of concurrency are 6 and 7: during their lifespan the
number of concurrent flows is between 6 and 12. The degree of concurrency experienced by a flow
decreases as the flow number is further from 6 or 7 (flows 5 and 8 experience at least 5 concurrent
flows, flows 4 and 9 at least 4 concurrent flows etc.) To conclude, as a simple rule, the less the distance
between flow number and the middle (6.5), the higher the degree of concurrency.

Figure 2.12 presents one representative repetition. As expected, flows in the middle, e.g. flows 5
to 8, have the fewest received packets. Additionally, for ZVAAL the curve for the number of received
and sent packets generally decreases from 1 to the middle (6.5) and increases afterwards, i.e. the flows
generally send/receive packets based on the degree of concurrency they experience. This is contrary
to static transmission (Q3 and Q2, without adaptation), where the flows in the middle experience a
much higher dropped packets rate than others.

Overall average for all repetitions, shown in figure 2.13, confirms that ZVAAL gives similar results
for all repetitions. The last column, Avg, is detailed in the table of the same figure. It shows the
superiority of ZVAAL on all classical static transmissions:

• compared to DCCP Q3, ZVAAL has 7% fewer received packets (40698/37683 − 1), but 40%
fewer sent packets (1− 41418/68623), leading to 87% fewer packet losses (1− 3735/27925);

• compared to DCCP Q2, ZVAAL receives 6% more packets (1 − 35531/37683) and sends 12%
fewer packets (1− 41418/46818), hence 33% fewer packet losses (3735/11287);

• compared to DCCP Q1 or Q0 it is much better, in terms of sent, received and lost packets.
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Figure 2.12: Comparison of number of sent and received packets for twelve flows with gap of 10 seconds
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Lost 3735 27925 11287 626 110

Figure 2.13: Comparison of number of sent and received packets for twelve concurrent flows with gap
of 10 seconds (average of five repetitions).

As a conclusion, once again, with video adaptation (ZVAAL) the bandwidth is more efficiently
used, especially when it changes dynamically or when the network experiences some bad conditions.

The final result is about ZVAAL fairness. We check if several applications on the same machine are
fair with respect to the number of sent packets. A test with 10 flows is used as example. Figure 2.14
shows graphically the percentage of sent packets by each flow at application layer when using ZVAAL.
More quantitatively, Jain’s fairness index [103], defined as:

(∑
i

xi

)2

/

(
n
∑
i

x2
i

)

where n is the number of flows and xi the number of sent packets of flow i, is equal to 0.9975, very close
to the ideal value of 1. This result shows that ZVAAL maintains the fairness among concurrent flows
on server (i.e. all flows have nearly equal percentage of sent packets). Note that the fairness presented
here measures the fairness induced by our video adaptation algorithm, which we could call adaptation
fairness. The absolute fairness depends on this adaptation fairness, and also on the fairness on the
network level. The latter one is guaranteed in our method by using a TCP-friendly congestion control.
In summary, given a fair (TCP-friendly) protocol in the network, the video adaptation fairness does
not by itself unbalance this fairness.
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Figure 2.14: Percentage of sent packets by each flow at the application layer using ZVAAL: the
percentages are nearly equal.

2.3.7 Conclusions

This section presented a simple but powerful method (VAAL) to adapt the content of video during
streaming, using the buffer overflow method on the server at the application layer. ZAAL, a companion
algorithm to reduce the number of oscillations in video quality, was presented too.

Intuitively, this method should lead to much better video streaming performance. Numerous real
experiments confirm this hypothesis, i.e. the bitrate used during the adaptation is shaped by the
available network bandwidth, and it generally either leads to much fewer packet losses, or avoids a
under-utilisation of the network bandwidth. Moreover, the use of a transport protocol (DCCP in our
implementation) with a congestion control (TFRC) guarantees the TCP-friendliness of our method,
and TFRC makes it video streaming friendly.

2.4 Taxonomy of parameters used in video adaptation

2.4.1 Introduction

As already specified, video adaptation allows to greatly enhance user experience when watching videos.
For that, many adaptation methods have been conceived. Some of them are sender-driven [119], oth-
ers are receiver-driven [126]. The decision sometimes uses sender buffer [159], sometimes receiver
buffer [119]. Some methods need beforehand data [73]; as a consequence, no method can deal op-
timally with all types of video transmission such as videosurveillance, videoconference, VoD (video
on demand). There are a multitude of papers about this topic in the literature, however there is no
article in the last ten years to classify the approaches used for adaptation.

In this context, this section fills this gap by classifying adaptation methods using a taxonomy of
the parameters used for adaptation decision. This allows to better understand adaptive video and
have a global vision on how it can be done. A valuable and realistic adaptation method is afterwards
suggested, without further evaluation.

The scope of this section is IP-based networks. Among the many steps in video transmission over
IP-based networks where optimisation can take place, such as ALF (Application Level Framing), FEC
(Forward Error Correction), video encoding and compression, this analysis focuses on the adaptation
step. We only take into account solutions which do video adaptation and present their specification
in scientific or white papers. Also, we consider in this analysis only network parameters and network
performance criteria. Moreover, we focus on adaptation caused by network conditions, so we do not
take into account other parameters, such as CPU load, available codecs, resolution and other terminal
capabilities discovery at the beginning of communication on the client side.

Note that this classification is done from the network viewpoint. As such, papers which deal with
image information results (such as image encoding, image quality, subjective or objective evaluation
of received videos) without taking into account network viewpoint are out of the scope of the current
analysis and have not been taken into account.
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Figure 2.15: Classical adaptive video transmission, the parts where transfer optimisation occur, and
the details of adaptation process.

2.4.2 Context

The goal of the section is to classify adaptation methods from some points of view. These points of
view are detailed in the following.

Figure 2.15 presents a classical adaptive video transmission divided into three parts. The upper
part of the image presents the classical figure of a closed-loop control between the sender and the
receiver allowing to make video adaptation.

This is further detailed in the middle part of the image, which presents the video data transfer
optimisations we have identified (we focus on end-to-end solutions, not on network ones, such as
network resource reservation and service classes):

1. optimisation of encoding (video formats);

2. optimisation of adaptation;

3. optimisation of specific video transport protocols.

It should be noted that each of the three categories can have several optimisation methods. Also,
a general video adaptation method can belong to several categories at the same time, i.e. it contains
ideas which affect several parts of the transfer. Moreover, several methods can be used to further
optimise video transmission.

The first category optimises specifically the video encoding in order to be the most adapted for
the transfer over the network, and/or for other related purposes (such as storage on servers and
encoder/decoder complexity). The signal processing community is constantly working to create new
standards of video encoding, such as H.264 and its SVC extension, Theora and VP8, which increase
the compression performance while maintaining a good video quality.

The methods in the second category act directly on the video data to be transmitted, for example
by choosing the bitrate to encode the video. They can be divided in methods which add redundant
information to video data, and methods which just change the bitrate of the video. For example, the
former can use Forward Error Correction (FEC) [182] to protect the application against transmission
errors at the expense of additional network resources used for this data.

The latter allows the flow to be network-friendly, and we will use the word “adaptation” for this.
Adaptation can be done in three ways:

• Using stream switching techniques. The video is encoded in several streams (files) with different
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qualities (bitrates) and the adaptation method dynamically switches among the streams so that
the bitrate matches the available bandwidth of the network.

• Using layer switching techniques. The video is encoded into several, potentially orthogonal,
layers: a base layer and enhancement layers. The adaptation method sends the base layer and
as many enhancement layers as possible depending on available bandwidth.

• Using direct encoding techniques. The adaptation method re-encodes periodically the transmit-
ted video based on the available bandwidth.

A widely-used layer switching technique is scalable video coding (SVC), which provides temporal,
spatial and quality scalability. Using this technique, the video is stored as a single stream (file), which
contains several enhancement substreams of the three scalability types. The particularity is that if
enhancement substreams are removed, the remaining bit stream is still decodable, hence making the
original stream scalable. For our purposes, removing substreams means not sending them on the
network because of the adaptation process, otherwise said decreasing video bitrate. A drawback is
that an SVC stream is less efficient in coding than an optimised single-layer stream at the same bitrate
[174]. An SVC technique for H.264/AVC with low efficiency loss has been standardised [174, 192]. It
leads to a high traffic variability [60], particularly suitable to adaptation.

Finally, the third category focuses on improving the network side of the transmission. Methods
belonging to this category improve the way packets are sent without changing the video data itself.
They act on many parameters. First, depending on the type of streaming, there are more appropriate
transport protocols, such as DCCP (Datagram Congestion Control Protocol) [77]. Then, there are
methods which selectively transmit packets (discarding some of them), based on available bandwidth
[84, 90], or selectively retransmit packets, based on their importance (I frames in an MPEG-encoded
video are always retransmitted, contrary to P and B frames, for example) [99]. There are also methods
that improve the performance of transport protocols on certain types of network so that the rate of
transmission is maintained at an appropriate level [163]. Furthermore, a commonly-used optimisation
technique is ALF (Application-Level Framing), which cuts intelligently video data in packets (avoiding
for example to put one small video frame in two packets, which would be more sensible to packet loss);
this is to be used in conjunction with the MTU (Maximum Transmission Unit) of the network.

The focus of this analysis is to present the adaptation process which is shown in the lower part
of the image of the figure.

We first note that the adaptation is not needed in some particular cases, for example:

• If the network bandwidth is relatively stable or at least is known in advance, then a sufficiently
big receiver buffer correlated to a not so small startup time on the receiver removes the need
of adaptation. The server however has to smooth data sending in order to match the available
bandwidth, especially when the video uses VBR (variable bit rate) encoding. Several smoothing
algorithms have been proposed in the literature, with various complexities and properties [197,
143]. They have been compared in [74], and the implications of smoothing on bandwidth and
delay analysed in [61].

• Contrary to video communication (which is the scope of this study), real-time audio communi-
cation uses a small bandwidth. Thus, the authors of [165] make the implicit assumption that
audio data will not exceed the available bandwidth and will not be lost. Hence, only the delay
variation, given by RTT, needs to be addressed. They propose an ingenious mechanism to play-
out delayed packets, described in the following. The receiver uses a small buffer. It is assumed
that audio data contains voice periods and silence periods. When voice data arrives in late, due
to increased RTT, the receiver adds silence periods to a currently-played silence period. When
RTT decreases back to normal, voice data arrives faster than its playout, and the receiver cuts
from silence periods, thus restoring the normal delay. To resume, the client hears the same voice
data, but with silence periods shortly longer or shorter.

It should be noted that in video case there are no “silence” periods which can be shortened or
lengthened. Additionally, the available bandwidth may not be sufficient, and considering the



62 CHAPTER 2. ADAPTIVE VIDEO STREAMING WITH CONGESTION CONTROL

RTT only is not good enough: if bandwidth becomes too small, packets get accumulated in
sender or network buffers very fast and eventually are dropped there. Thus, in video case the
problem is not only with the delay, but also with data packets which get lost.

In the general case where the adaptation process is used, it needs a decision about bitrate increasing,
decreasing or maintaining. The adaptation process can thus be divided in three time frames: before,
at and after adaptation decision. In the first time frame, all the necessary parameters needed by the
decision are gathered. The decision is then taken at the second frame. Finally, once the decision has
been made, in the third time frame the adaptation itself can take place. The three time frames are
analysed below.

In the “before decision” time frame, several parameters exist to help taking the adaptation decision.
For example, the available network bandwidth or the filling level of the receiver buffer. We group them
in the what group, which is the main group in this time frame.

At the moment of decision, we take into account who does the decision (sender, receiver) and when
it does it (e.g. each second). The decision is whether the bitrate should be increased, decreased or
maintained.

Finally, after the decision, several parameters, grouped in the how group, can be changed. For
example, modifying the bitrate can be done by modifying the quantisation parameter of the codec, or
modifying the number of FPS (frames per second) or the resolution or other parameter, or changing
the level in a multi-level encoded video. This can also take into account the client characteristics, for
example the maximum resolution on that particular device or the set of video codecs supported.

Video adaptation is a multidisciplinary domain. The network research community pays more
attention to the first time frame (information gathering about transfer speed) and the second time
frame (adaptation decision), and the image research community is especially involved in the third time
frame (video quality modification). The time frames can be optimised independently of each other.
This study focuses on the first two time frames, i.e. it does not present how video is changed to match
the desired bitrate.

2.4.3 Complexity of adaptive video transfer

Adaptive video transfer is more complicated to understand than it appears. One of the reasons is
that different speeds are involved. As is shown in figure 2.16, several parts affect the speed of a
communication:

• the sender: the application generates data at some speed (i.e. generating bitrate), and the
transport layer may modify it by buffering and delaying it (i.e. sending speed);

• the network has its own speed, given by its resources and their instantaneous usage (i.e. data
transmission speed);

• the receiver: the transport and/or application layer buffers data so that it is shown timely on
the user screen (i.e. data consumption speed).

We analyse the variation of these speeds (i.e. whether they are constant or dynamic) in the following.
We assume that network congestion control is used. We consider that the amount of data can

be measured either in bytes, or in video duration (seconds of video). During each second of the
transmission:

• the sender application sends an amount of data either in terms of bytes or of seconds. It can
send either a constant duration (one second of video, in a videoconferencing/videosurveillance
case), or a dynamic duration (for example several seconds of data in a VoD case). On the other
hand, it generally sends a dynamic amount of data in bytes (equal to current bitrate, which
changes over time);

• similarly, the network transports a dynamic amount of data (either in bytes or in seconds);

• the receiver application consumes a constant video duration of data (one second of video), and
a dynamic amount of bytes of data (equal to sender bitrate in an ideal network).
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Figure 2.16: The various speeds involved in a video transfer.

Sender app Network Receiver app

Secs const or dyn (ctrl) dyn (non ctrl) const
Bytes dyn (ctrl) dyn (non ctrl) dyn (sender&net-ctrl)

Table 2.3: The variation and controllability of the speeds involved in a video transfer.

On the other hand, the sender has control over its own dynamicity, since it can change the bitrate. The
video system (sender and receiver) has no control over network speed since it is defined by available
bandwidth, an external factor to the video system; the network is also responsible for lost packets;
thus, network input (at sender) is not necessarily equal to network output (at receiver). The receiver
consumes an amount in bytes at the speed given by the sender bitrate and network bandwidth, while
the data duration consumed is constant (except if the user pauses the video stream). So the only
uncontrollable factor comes from the network. This is summarised in table 2.3.

Given the discussion above, we end up with three different speeds (on sender, network and receiver)
and two different measurements of speed (in duration or in bytes). All these parameters are correlated,
for example when network speed increases, receiver data accumulates and sender buffers become empty,
hence the sender speed can increase. As such, adaptation methods can use any of them, and that is
the main reason why several types of methods exist. Next section presents some of them.

2.4.4 Some methods presentation

We have analysed numerous video adaptation methods in order to differentiate them. This subsection
presents a few examples of video adaptation methods found in the literature with regard to the
parameters used by adaptation. A longer presentation is found in [59].

Methods using information from sender buffer In QAC, Quality Adaptation Controller [52],
the adaptation of the video is done on the server side, which stores the same video in several files
with different bitrates. QAC uses HTTP and an application buffer. A worker thread continuously
takes video packets from the application buffer and sends them to TCP. It monitors the size q of the
application buffer. It chooses the highest bitrate which makes q greater than a predefined threshold qt,
while keeping at the same time the data rate under available bandwidth. So, the buffer has always
data to be transmitted. The available bandwidth in QAC is modelled as a disturbance, as explained
in [132].
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Methods using information from receiver buffer The Buffer-driven adaptation method, de-
scribed in [119], takes into account the occupancy of the receiver buffer to infer which video quality
should be chosen and streamed. The occupancy BE of the receiver buffer is used at the sender by the
following equation (presented in [118]):

BE = BC +

(
pktnum ∗ s

i
− ER

)
∗RTT (2.8)

where BC is the last buffer occupancy, pktnum the number of packets, s the packet size, i RTCP
(RTP Control Protocol) interval, and ER the encoding rate.

Methods using information from network Kofler et al. [114] present a method that handles the
streaming towards a wireless terminal. The adaptation method presented uses a platform for streaming
based on MPEG-21 [35] to stream multi-layer videos based on SVC extension of H.264/AVC. It is
applied on the server side and operates on two layers, application and transport layers, but other
layers, such as the physical layer, can provide additional information. The video is divided in several
units, using the generic bitstream syntax decription (gBSD) tool. The adaptation is done on a unit
as a whole. This technique is similar to dividing the video in several independent parts. The adapted
units will be later sent through the RTP protocol. For network bandwidth estimation the authors
also implemented the equation used by TFRC flow while using a feedback system based on RTSP to
deliver network information (input parameters of the equation of TFRC throughput) from the client
to the server. This information is sent periodically (once per RTT, Round-Trip Time).

Methods using information from sender/receiver buffer and network In [142] the video is
divided in several spatial layers, several temporal layers, and several quality layers with one base layer
and several quality enhancement layers. The available bandwidth is estimated in two different manners.
At the beginning of the transmission, the available bandwidth is estimated through a technique similar
to PTR (Packet Transmission Rate) [97], which is a variation of the well-known packet pair technique.
Afterwards, the client periodically sends to the server the estimated bandwidth B, the occupancy of
the receiver buffer and acknowledgements for base layer packets.

Methods proposed by major companies Examples are IIS Smooth Streaming [204], Adobe
HTTP Dynamic Streaming [64], HTTP Adaptive Live Streaming [145], and the recent standard MPEG
DASH [100, 181]. All these methods are based on HTTP over TCP, and have some other common
points. In all of them, the video is encoded in different bitrates and the resulting files are divided (either
virtually upon client request or at content creation) to multiple independently decodable chunks, for
example each interval of k seconds of the video (0-k, k-2k, 2k-3k, 3k-4k etc.) are stored in M files
with M different bitrates. The general principle is that the client initially fetches a manifest file with
information about available files (such as quality, duration and file name) and afterwards it regularly
measures when data of the k seconds arrived to infer network capacity; for example, if it arrived in
less than k seconds, then the network is faster than the current playback, hence for the next k seconds
the client requests a file with higher bitrate. These requests use standard HTTP GET transactions.

2.4.5 Taxonomy criteria description

After reviewing several articles on video adaptation, we focus now on creating a taxonomy for adap-
tation methods. This section details the criteria used for the taxonomy. Some criteria deal with the
context where the method can be used, an information especially useful to the video provider. Others
deal with the parameters needed for the adaptation method (how the adaptation process works). Fi-
nally, each method presents some specific characteristics. Therefore, we divide criteria in three parts:
context, functioning and properties.

Note that we take into account criteria related to the adaptation idea. We are not interested, for
example, if the method was validated through simulations or real experiments, or if the examples
given in the article were for videoconference or for VoD or for another video type. Moreover, we focus
on before adaptation and at adaptation time frames, not on after adaptation.
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Usage context

Compatibility with ahead of time (beforehand) data availability: whether the method works
when no or few data is available on the sender before transmission. Based on the amount of data
available (or data generation) before adaptation or sending process, we identify three cases:

1. no data is available: this is the case for videoconferencing and for critical videosurveillance
(CCTV, closed-circuit television), where data must be sent immediately after its generation.

2. some data is available: this is the case for digital broadcasting television, where data is sometimes
delayed by a few seconds (the so-called seven-second delay or broadcast delay), and for non-
critical videosurveillance.

3. all the data is available: this is the case for VoD (Video on Demand) or files stored on server.

The next table presents an example of this criterion on three hypothetical methods:

Method 1 Method 2 Method 3

No data yes no no
Few data yes no yes
All data yes yes yes

Note that a method which needs no data for example works also when few or all data is available.

Usage: We consider here whether the method is appropriate to real-time video transmission (such
as videoconferencing) or to delay-tolerant transmission (such as video on demand). A “real-time”
method is of course appropriate for delay-tolerant transmission too. Also, if a method needs some
beforehand data, then it cannot be real-time.

Functioning

Who: who takes the decision of the adaptation (whether it should increase, decrease or maintain
video quality). Two values are possible for this parameter: sender and receiver.

This should not be confounded with who does the adaptation, which is always the sender, since
the video is found on sender (for our purposes, adaptation on an intermediate network equipment, i.e.
proxies, are included in sender part). It should not be confounded with who makes calculus either;
the calculus can be made by several parties (for ex. sender computes the bandwidth and the receiver
computes the packet delay), but only one party takes the decision. We do not take into account who
makes calculus, since as far as we have seen calculus are simple and fast (such as summing up several
values) compared to when the decision is made.

What: what information (parameters) are used to take the decision. Two values have been found
in the literature: buffer (at sender or at receiver) and network. Both can be measured either in bytes,
or in seconds of video.

When: when the adaptation decision (or parameter evaluation) is performed (note that the decision
could be to change one or several video parameters, or simply not to change anything).

Computing interval of parameters: what interval in time is taken into account for the adaptation
compared to the adaptation interval. Suppose the adaptation decision is taken each N seconds. The
decision could use the parameters from the whole interval, a smaller one (for ex. last RTT), or even
the instant value of the parameter. For example, each 2 seconds the average data rate on the last
RTT is used to choose the bitrate for the following interval of 2 seconds.
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Properties

The functioning of a method can need specific properties. For example, some methods use the well-
established HTTP protocol, others work with any transport protocol with congestion control. Some
methods work with with multi-layered video only, while others work no matter the video encoding.
Some methods support MPEG-21, which is a standard allowing, among others, the sender to find out
the characteristics of the client (codecs available, maximum resolution allowed etc.)

2.4.6 Discussion

Table 2.4 presents a classification of the methods reviewed based on the criteria specified in previous
section. We discuss the results of each column, and afterwards make some general remarks.

Beforehand: In the beforehand column it can be seen that all the possibilities are present, i.e. some
methods need no beforehand data, others need a few only, whereas other need all the video stream
before starting transmission. As an example, methods with “all” work only in case of stored files
(VoD), in which case they potentially give better results.

It is worthwhile to note that major companies solutions need all video data beforehand. Indeed,
the manuscript file, which gathers information about all available video streams and allows client to
regularly request the appropriate stream, is downloaded by client at the beginning of communication.

Usage: Some interesting points can be remarked. First, both values (real-time and delay) are found
abundantly in the literature. Also, as written before, methods working in real-time also work in
delay-tolerant transmissions.

Furthermore, methods based on TCP (such as [52, 73]) or which need few or all beforehand data
(such as [65, 126]) are not considered to be real-time. Other methods, such as [191], use client-aware
intermediary nodes for performing adaptation, and as such they are useful only for delayed video
transmission. Some others, such as [194], use virtual buffers, a kind of aggregated buffer for buffers
on server and intermediate nodes, which reduce lost packets rate but add delay.

We also consider that since all the methods presented adapt video, the moment when they adapt
is not so important, i.e. adapting each RTCP interval or each 2 seconds does not prevent them to be
real-time. We do not consider multi-layer encoding to have an influence on real-timeliness of a method
either.

A final interesting remark is that major companies solutions need beforehand data, and as such
they are not appropriate for real-time communications.

Who: In the table it can be seen that generally the decision is taken by the sender. This is not
surprising, since most of the information used for the decision is found on the sender: the sender does
the adaptation, it has the video data and information about them (available qualities/bitrates, size,
encoding, future characteristics etc.) However, the solutions proposed by major companies, based on
HTTP, are receiver-driven. In this case, the sender sends information about videos to the receiver
at the beginning of the communication (through a manifest file), and the receiver regularly sends
adaptation information to the sender (through HTTP requests).

The difference between research community, where the decision is taken by server, and industry,
where the decision is taken by receiver, is interesting and can be explained as following.

First, as already said, video is found or generated on server, hence all the information about video
is found on server. Taking the decision on server avoids such information to be regularly exchanged
between server and client, so this appears as a natural and optimised choice in research community.

Second, industry is bound HTTP/TCP, and there are several reasons for this. As industry deploys
their solutions at very large scale, practical concerns/constraints are extremely important (such as has
to work, now on Internet). Avoiding interconnection issues allows major companies to attain as much
clients as possible. Nowadays HTTP, which is on top of TCP, is the works-everywhere application
protocol (it is allowed in all networks: Internet, telecommunication networks).
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Table 2.4: Classification of major adaptation methods found in the literature, grouped by what pa-
rameter.
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Furthermore, solutions based on HTTP and with client-side decisions scale well: they can use
HTTP caches already in place (because data for a given address does not change) and current content
delivery networks (CDN), they yield a stateless protocol (the server does not keep track of clients),
work well when client pauses/resumes the video (since the video is not unnecessarily transmitted
during pause), do not overwhelm clients which do not have enough CPU power to process all data
received from network, they work in IP multicast or with many receivers of the same video source etc.

It should be noted that HTTP by itself does not prevent the server to take the decision, as shown
by QAC [52], where the decision is taken by HTTP server. However, this means that all the advantages
on scalability presented above disappear. Also, this means that the server needs to be modified in
order to check current network conditions. In QAC for example, the HTTP server fills an application
buffer and a worker thread drains it by sending packets the TCP. As a side note, this also adds a small
delay to transmission.

What: The what parameter is the essential and the most complex parameter. Indeed, to be able to
know whether to increase, maintain or decrease the video quality, the decider needs some information
about the transmission speed. Feedback from receiver is required, usually through a transport protocol
with congestion control or through an application protocol such as RTCP or HTTP. We have identified
in the literature two sources to get this information: from sender or receiver buffer, and from network.
Both can be viewed in terms of bytes, or of seconds of video. They are explained in the following.

The first source of information is thus sender or receiver buffer. When the network is too slow,
packets get accumulated on sender buffer. When it is too fast, packets get accumulated on receiver
buffer. Thus, the filling level of those two buffers of transport protocols (also called sockets in pro-
gramming languages) expresses transmission speed. Note that the use of these two buffers is not a new
idea, since they are very similar to congestion window and receiver window used in classical congestion
control and respectively flow control of TCP transport protocol.

The buffer can be measured in two distinct ways: either in bytes, or in seconds of video. For
example, the same size of data in buffer, 1Mb, corresponds to 1 second of 1Mb/s video, and to
4 seconds of 256kb/s video. When buffer is measured in bytes, methods can look at the filling level of
the buffer, or only whether the buffer is completely filled or not.

Classically, the adaptation using buffer information is done as following. On the sender side, a filling
buffer (either in bytes or in seconds of video) means a network speed slower than data generation,
hence the application should generate less data, so it should decrease video quality; and it should
increase quality for buffer lowering. Conversely, on the receiver side a filling buffer (either in bytes or
in seconds of video) means too much data arrived, hence network is faster than data consumption,
hence sender can send more data by increasing video quality; a lowering buffer should cause a quality
decrease so that an empty buffer (leading eventually to video freezing) be avoided.

From an implementation point of view, buffer filling information is currently provided by some
operating systems and only for TCP2. Otherwise, the sender can “simulate” it by using its own
application buffer as following: The sender puts packets in an application buffer, while another thread
continuously moves data from this buffer to transport protocol buffer; thus the application has access
to the filling level of application buffer.

The second source of information is the network itself: its speed, its delay or other related param-
eter. For example, when the network speed is slower than bitrate, or when N seconds of video are
received in M > N seconds, packets do not arrive in time to receiver; when the network is faster than
bitrate, the quality can be increased.

Again, the network information is divided in bytes, for example the available bandwidth or through-
put, and duration, for example the time taken by some data to be transferred on the network between
sender and receiver.

Network information can be obtained from transport protocols with congestion control, such as
TCP ([73]) or DCCP/TFRC ([114]), or otherwise from application protocols, such as the classical
RTP/RTCP ([192]). In the former case, transport protocols estimate bandwidth (or other network-

2On GNU/Linux, a tcp info structure with such information is returned by getsockopt function with TCP INFO as
parameter.
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specific parameter, such as instantaneous TCP congestion window size) which can be read at applica-
tion level3. In the latter case, regular control feedback is sent from receiver to sender with information
such as number of lost packets.

To resume, the sender application should decrease bitrate when the sender buffer fills up or when
the network bandwidth lowers or when the receiver buffer lowers.

It is interesting to see what happens when the user stops the video for some amount of time
(5 minutes for example). Methods which use the receiver buffer will notice this, by seeing the buffer
filling up, hence they can for example increase quality until the best one and keep it sending. The
other methods act as if nothing happened, filling up the receiver buffer. Nevertheless, this is subject
to transport protocol constraints on receiver buffer, such as flow control in TCP.

It should be noted that the change in bitrate could be subject to constraints other than network-
based. For example, VAAL [162] includes an oscillation-avoiding algorithm which prevents bitrate
increasing if it leads to quality oscillations, and DRDOBS [194] uses rate-distortion optimisation, where
the bitrate is changed only if the quality increasing is worth the extra bits. We do not detail such
parameters because, as written in the introduction section, our study focuses on network parameters.

It is still an open question which what parameter is qualitatively better. Some methods (Nguyen
[142] and HTTP-based [204, 64, 145, 100]) even use two parameters: receiver buffer and network.
However, these parameters, either in bytes or in seconds of video, are dependent each other, which
means that their combined usage does not give much more information than one parameter alone. For
example, the fact that 2 seconds of video data have been received in 1 second can be measured in two
distinct manners: measuring how much data has been transmitted (from the network perspective),
and how much data the buffer has received (from the buffer perspective). Also, it is known that video
bitrate equals data size divided by video duration, and network throughput equals data size divided
by transfer time. This means that if in 2 seconds the receiver buffer received 1Mb of new data (buffer
measurement), then the network throughput was 512kb/s (network measurement).

When: The when parameter deals with the time when the adaptation occurs. We were first tempted
to divide this criterion in static or dynamic, however this does not work, since these two terms are
always related to something: a method which adapts each N received packets, for example, is static
in terms of number of packets, and dynamic in time. So we decided to consider this criterion as static
in the following terms: in time (e.g. in seconds), in number of RTTs, in number of packets, or other.
Mathematically, this gives a function f(t) = k*t, f(RTT) = k*RTT, f(nbpkt) = k*nbpkt, or f(...) Note
that some codecs may have constraints on the moment when the quality can change.

This parameter has a notable characteristic. Doing frequent adaptations increases indeed video
quality received by the user, but has an adverse effect. Methods where the when parameter is small
(e.g. up to a few seconds) might create undesirable oscillations in quality. Indeed, constantly adapting
and changing video quality often leads to a negative perception of the video by the user. Methods to
avoid such oscillations exist [160].

As shown in table 2.4, several values are used in the literature for this parameter. Finding out the
most appropriate value for when is still an open question.

Interval: There is no consensus on the value of this parameter. Some methods in the literature use
an average on either the last RTT, or the whole interval. Others use the instant value, a fixed interval
etc. Some articles, noted by N/A, have not presented it.

There are also methods, such as HTTP-based, which use several intervals, e.g. instant when using
receiver buffer and whole interval when using network in seconds.

We are aware of the works on video bandwidth forecasting, in which the server introduces in the
flow information about the following video frames, such as frame size, over an interval of one GOP for
example, information which could subsequently be used by routers in the path to optimise the transfer
[91]. It should be noted that this anticipation interval is not necessarily the same as the computing
interval, which could itself be different than the interval where adaptation occurs, as explained in the
previous section.

3See the previous footnote, on TCP.
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Properties: In the same table it can be seen that some methods use HTTP. This allows to bypass
firewalls in various, currently very restrictive, networks (Internet, 3G etc.) and provide a universal
access service. Others use various transport protocols with congestion control (TCP, DCCP) or the
classical feedback-featured RTP/RTCP. Others work with any transport protocol (TP) with congestion
control (CC).

Additionally, several methods use multi-layer encoded videos (ML), which are currently seen much
interest and provide good performance. Also, MPEG-21 standard support is provided by some meth-
ods too.

Given all the discussion above, we can wonder about what the ideal method is. Of course, it
should be real-time, without beforehand data needed, so that it can be used in all cases, but this
could sometimes be incompatible with other goals. In the following we propose a solution which we
do not argue to be ideal, but could be valuable to study.

The parameters where the best value is still open question are What, When and Interval.
Who is a very important parameter. Methods based on server decision work in all cases, real-time

and delay-tolerant transmission, since the server has information about video as soon as it is generated.
On the other hand, methods based on client decision scale well, taking into account Internet resources
(e.g. HTTP caches). A mixture of the two could potentially give the advantages of both solutions.
For example, server sends small-size data information about video together with video data, and client
takes the decision.

Properties parameter is very important too. Using HTTP solves connectivity issues at application
level on currently-restrictive Internet. At transport level, TCP is connectivity-friendly too, but leads
to non real-time behaviour. DCCP is also connectivity-friendly, since it is connection-oriented and has
congestion control. Restrictive firewalls could be easily updated to allow DCCP. Therefore, a potential
solution would be HTTP on DCCP for video transfers.

So our basic idea is that each HTTP transfer use TCP, as usually, except for video files, which use
DCCP instead. Video files can be recognised using the extension of the file asked (for example .avi).
Choosing DCCP instead of TCP can be done either on server (videos are always sent with DCCP) or
on client (in the HTTP request header). Note that in DCCP data transfer is unreliable, but session
establishment and teardown are reliable. We have already used DCCP (without HTTP) to stream
video [159].

Summing up, a valuable solution we propose is to use HTTP on top of DCCP. The real-time goal
could be obtained by making server send to client small-size data information about video together
with video data, and let client take the decision about video adaptation.

2.4.7 Other surveys

In order to maximise the chances to find out related works, we have made a search using specific
search terms and took into account all the articles returned. For the sake of precision, we describe
here the method used.

An exhaustive search on google scholar was carried on March 2013 with the following search term:
allintitle: (multimedia OR video OR content) AND (adaptation OR adaptive OR adaptative) AND
(survey OR classification OR taxonomy OR review OR comparison), which looks for articles containing
in their title a word from each of the three OR groups4. Among all the papers found, we disregarded
the ones not being a survey or which were completely irrelevant to our paper (for ex. papers about
video content classification or which do not treat adaptation) or which were not written in English.
Four papers remained, presented in the following.

Arsan [7] presents a review of bandwidth estimation tools for wired and wireless networks with
respect to video streaming. The review is about estimating available bandwidth, which is one of the
parameters used when doing video adaptation. This parameter corresponds to the What column of
our analysis, when its value is network bytes, meaning that network information is used for adaptation.
As such, it focuses on one particular part of our analysis.

4In practice, google scholar accepts only one group of ORs, so we divided the search term in 3*3=9 searches; for
example one of them was allintitle: multimedia adaptation survey OR classification OR taxonomy OR review
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Vandalore [186] is a very general survey on adaptive multimedia methods. It treats video com-
pression standards such as MPEG and wavelet encoding, rate shaping5, FEC, video data smoothing6,
video/audio synchronisation, operating system support (CPU time allocation, thread priority). In-
stead, we specifically detail parameters used in video adaptation.

Adzic et al. [2] consider the general case of Web page content adaptation (text, image, video etc.)
to devices with specific constraints (small screen and bandwidth). They consider a full presentation,
with video, audio, text, thumbnail etc. and the adaptation consists in cutting one of them (e.g. a
proxy which removes all images from a Web page), modifying images so that they do not surpass
screen size, adapting font size etc. The papers included in their survey do not adapt videos, but Web
pages, contrary to our analysis. Hence, the two articles treat adaptation on different levels.

Pu [155] presents a survey on QoS mechanism meant for a distributed multimedia server, not
for the transmission itself. He concentrates on middleware level, and considers various programming
technologies, such as Java, CORBA and green threads to increase performance of multimedia server.

Sadaf [167] presents methods to choose a data rate (6, 9, ..., 54 Mbps) in 802.11 wireless networks
function of the error rate of each data rate. The aim is to improve the video transmission from
network point of view. It is specific to IEEE 802.11 networks: it takes into account channel availability,
RTS/CTS and user mobility. This paper adapts network parameters, not data. Also, the scope of our
analysis is broader (any network) and focuses on adaptation parameters.

2.4.8 Conclusions

This section presented several methods found in the literature aiming to adapt video to network
conditions during video streaming. A taxonomy of parameters taken into account by decision methods
has been introduced. Methods presented have been discussed with respect to the taxonomy.

It turns out that many parameters can be used when taking the decision of video adaptation. In
the research community, usually the sender does the adaptation. Major companies solutions currently
use HTTP instead, and the adaptation is receiver-driven. Three parameters are commonly used for
the decision: sender buffer, network or receiver buffer. Values can be measured either in bytes or in
seconds of video.

After method analysis, a valuable and realistic method for video adaptation, taking into account
advantages from several methods, has been suggested. It uses HTTP on top of DCCP with a small
traffic from server to client, who takes adaptation decision.

2.5 Conclusions

During the last 35 years (since congestion control in TCP appeared [152]), data transmission in
networks has always been a timely computer science field. New network technologies with changing
characteristics (e.g. wireless and long fat networks), new applications (e.g. video data, HTTP), new
hardware characteristics (such as bufferbloat7) have fuelled this interest. A few transport protocols
have been standardised the last decade, such as SCTP [180] and DCCP. It turns out that community
has reached a point where changes, even beneficial, are difficult or impossible to make. Almost
ten years after standardisation, DCCP, “intended for applications such as streaming media” [115],
is almost nonexistent on Internet. Also, the one-year old MPEG DASH standard uses the old but
widely-deployed HTTP and TCP protocols.

A relatively recent trend in the community is video adaptation for video streaming. Several types
of methods have been conceived, with fundamental differences such as who, the server or the client
or both, takes the adaptation decision and based on which information, still no cleaner winner has
emerged from scientific or technical point of view. However, a standard recently has appeared, MPEG

5Rate shaping: adjust the rate of traffic generated based on the available bandwidth.
6Smoothing: in the context of VBR videos where different frames have different sizes in bytes, smoothing means

sending parts of large frames later (or sooner), in the same time as smaller video frames, in order to use constant
bandwidth.

7See for example [85] and http://www.bufferbloat.net.
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DASH, which is embraced by major companies. After several years, the congestion control (used by
DASH) has also won the battle with the absence of congestion control (solutions based on UDP).

I expect this field to become even more important, driven by the flourish of video images in our
lives and the increasing interconnection of objects, with projects like google glasses, 3D video and
ubiquitous videoconferencing, to name just a few.



Chapter 3

Communication in distributed
intelligent MEMS

3.1 Introduction

Around year 2005, my computer science laboratory (LIFC, Laboratoire d’Informatique de l’Université
de Franche-Comté) started to consider its integration to the FEMTO-ST institute. The institute was
created in 2004 by the fusion of 5 laboratories in our geographical region (Energy, Applied mechan-
ics, Micro nano science & systems, Optics, and Time-frequency) and later Automatics and micro-
mechatronics systems laboratory too. As such, multi-disciplinary projects involving our laboratory
and FEMTO-ST institute have been considered.

A member of my team in the computer science laboratory (Julien Bourgeois) created such a project,
called Smart surface, which received funding from the recently created national research agency ANR,
Agence Nationale de la Recherche, PSIRob (ROBO) program. More than twenty researchers from six
laboratories were involved: our laboratory, FEMTO-ST institute, LAAS (Toulouse, France), LIMMS
(Tokyo, Japan) and InESS (Strasbourg, France). The project received 465 keuros from 2006 to 2010.

I decided to get involved in this project and in the cooperation with the various partners.

The objective of the project is to design a distributed and integrated micro-manipulator based
on an array of micro-modules in order to realise an automated positioning and conveying surface,
as shown in figure 3.1. Each micro-module will be composed of a micro-sensor, a micro-actuator, a
communication unit and a programmable processing unit. The cooperation of these micro-modules
thanks to an integrated network will allow to recognise the parts and to control micro-actuators in
order to move and position accurately the parts on the smart surface. The parts are small, they
cover a few numbers of micro-modules (e.g. 4× 4). Due to scalability, robustness to failures and even
simplicity, we have conceived the communication network as a peer-to-peer network. The network
consists of links between each two direct neighbours (4-connectivity). The communication must be
faster than the sampling period. On the other hand all the measures must be done at the same time
at each sampling period.

The smart surface was still in design phase when we worked on this project, and it was noticeably
easier to construct a smart surface prototype at a greater scale than the micro-scale surface. A
prototype of pneumatic surface with conventional technologies has been built (see figure 3.2), which,
associated to a software emulating the distributed architecture, helped to conduct the proof-of-concept
of future smart surfaces. The distributed air-jet manipulation surface is a 120×120 mm2 square surface
with a 15x15 actuators array, upon which an object is moving in constant aerodynamic levitation
thanks to the airflow that comes through the lateral common air inlet. Objects are moved by generating
strong vertical air-jets through the other holes of the surface. A camera positioned above the surface
provides the top view of the entire surface. It emulates the cell sensors and allows free discretisation of
the part on the surface for testing purposes. The image processing calculates the state bi(k) of every
emulated sensor i for each video frame k based on the grey level of pixels. bi(k) is 1 if the object is
above the sensor i, and 0 elsewhere. The building of the surface and the control block have been done
by another team, the AS2M department of our laboratory, hence they will not be presented here.

73
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Figure 3.1: The smart surface concept.

Camera

The Smart Surface Prototype

Figure 3.2: Overview of the smart surface prototype.
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Inside this project, my computer science team is responsible for the information management inside
the smart surface, i.e. distributed differentiation of the part and communication infrastructure. When
on object is put on the surface, it has to be differentiated and afterwards the control plane must
be informed about the type of the object, where it lies and where to move it; the control takes the
“ball” afterwards. Some challenges of our team are pattern recognition for objects/parts of very low
resolution (e.g. 3 × 3), real-timeliness required by control part of the surface, integration with other
teams, and make it work with the real surface.

Working with people from other scientific disciplines is harder because their field is unknown to
a computer scientist. In our project, some people usually worked with physical laws, and material
fabrication, whereas we worked with computer programs or algorithms. The vocabulary also could
be different. For example, a computer scientist would say that a distributed control means that the
control is done by several components which communicate through messages, whereas an automatics
scientist would say that it means that the system is discretised and have many points or variables.

This chapter presents my work on this project: a framework to test possible combinations of
parts [31], a surface calibrator [32, 55], glued together with motion control [33], with enhanced part
differentiation [66, 67] and information distribution using trees [171].

By the way, there have been numerous projects of MEMS actuator arrays in the past and more
precisely in the 1990’s. These pioneer researches have developed different types of MEMS actuator
arrays, based on actuators either pneumatic [149, 82], servoed roller wheels [128, 129], magnetic [127] or
thermobimoph and electrostatic [183]. Some of these preliminary studies use a sensorless manipulation
scheme based on Goldberg’s algorithm [86] for parallel jaw grippers. The jaw grippers are obtained
with MEMS actuator arrays by creating opposite field forces which then can orient and move the parts.
Böhringer et al. [23] have proposed a concept called “programmable force field” which is an extension
of Goldberg’s algorithm. This manipulation scheme which is well-adapted for jaw grippers has shown
some limitations when adapted to MEMS actuator arrays. For instance, the absence of a command
law can lead to uncertain behaviours [138] or MEMS actuator arrays have to be programmed for each
different kind of parts. More recent research has been conducted in order to include sensors and to
add intelligence to MEMS actuator arrays but it either fails to develop it at a micro-scale [20] or to
be fully integrated [83].

More specifically, the literature on sorting and positioning micro objects in a low resolution context
is, to the best of our knowledge, almost nonexistent. Low resolution has however been studied in other
contexts, such as low resolution character recognition [101], and a novel approach based on the Radon
transform for complex shapes identification [184].

3.2 Exhaustive comparison framework

As written before, the first step is to implement part differentiation algorithms on the Smart Surface.
Before that, we are interested to find out criteria allowing high differentiation rates.

3.2.1 Framework overview

This section presents a framework for criteria comparison in differentiating parts, based on an exhaus-
tive part generation. The framework is presented in figure 3.3. It receives as input a set of criteria, the
maximum part size (a square) and the number of parts to differentiate. The framework exhaustively
generates all the appropriate parts. It generates several comparison trees: differentiation tree, cost
tree. An example of question which the framework answers to is: What criteria three random parts
not greater than 3× 3 do differentiate best?

The constraints of the framework, which will be relaxed in future sections, are: parts can be rotated
only at 90◦; we work on family of parts. We define a family of parts all the ideal parts which have
the same image (discrete representation) on the surface. For example, the typographic letters L and L
(with and without serifs) have the same image on the surface, because the serifs are much smaller
than the sensors. Additionally, we consider there is no error in sensors and communications.

The framework has two phases: part generation and part differentiation.
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Figure 3.3: Overview of the framework.

Max part size Number of parts generated Number of unique parts Number of groups
3× 3 512 35 C3

35 = 6545
4× 4 65536 1280 C3

1280 = 348706560

Table 3.1: Information for groups of three parts.

Part generation The parts on the smart surface are supposed to be represented by square matrices
of size 3 or 4. In order to find criteria reaching 100% differentiation, all possible parts of size P × P
with P = 3 and P = 4 are considered. This set of parts is used to generate groups of 3 parts. These
groups are used to test the criteria or combinations of criteria which reach total differentiation. Part
generation has four steps:

1. All the parts of size P × P are generated.

2. The resulting set of parts is reduced by eliminating translations, 90◦ rotations and mirrors (see
table 3.1). Let T be the total number of unique parts.

3. All the combinations of n parts from the previously generated parts are generated (see table 3.1).

4. All the combinations of CCi criteria are generated. For example, if Ci = {A,S, P} is the set
of criteria, the generated combinations are CCi = {{A}, {S}, {P}, {AS}, {AP}, {SP}, {ASP}}.
This means that all the criteria are combined in order to differentiate the parts. Several criteria
have been tested, presented in the next section.

Part differentiation For each criterion Cj and each group Gi of parts, a differentiation matrix D
is generated, with D(i, j) = 1 if the values of the criterion between the two parts i and j are different,
otherwise it is 0.

DGi,Cj (k, l) = 1, ∀k, l ∈ P
⇔ Cj differentiates all P ∈ Gi

(3.1)

In the case of a combination of several criteria CCj the union of the differentiation matrices is
computed. If the matrix D contains only 1 values, the parts are said to be differentiated according to
this combination of criteria.

DGi,CCj = ∪k∈CCj
DGi,Ck

CCj ⊂ {C1, C2, ..., Cm}
(3.2)

The matrix D is upper triangular. A differentiation is said to be total if the matrices are differenti-
ated according to all possible groups. Figure 3.4 is an example of the computation of a differentiation
matrix with G1 = {P1, P2, P3} for the combination of criteria CC1 = {ASP}.

The major challenge is to find out a combination of criteria which leads to a total differentiation,
i.e. for any group of parts, a differentiation of the parts using one combination of our criteria is always
achieved.
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Figure 3.4: An example of a group differentiation according to a combination of criteria.

The following algorithm details this process. Let n be the number of parts which need to be
differentiated. The framework generates all the groups of n parts. If T is the total number of unique
parts, there will be Cn

T groups.

1: for each CCi = subset of {C1, C2, ..., Cm} do
2: for each group Gi subset of n elements in P do
3: if CCi is a criterion then
4: build the differentiation matrix DGi,CCi

5: else
6: {CCi is a combination of criteria}
7: for each Cj in CCi do
8: build the differentiation matrix DGi,CCj =

⋃
DGi,Cj

9: end for
10: end if
11: compute the differentiation rate t
12: end for
13: compute the average ta of all differentiation rates t
14: end for
15: build comparison tree

The usefulness of criteria is presented as a simplified tree (i.e. path XY is the same as Y X) called
comparison tree (an example is in figure 3.5 later). Each node has a value expressed as percentage of
differentiation using all the criteria of the path from the root of the tree. Finally, a cost (execution
time, memory used etc.) is associated to each branch.

3.2.2 Numerical results

The aim of our work is to differentiate relatively small parts by finding a set of criteria. These parts
are represented by square matrices of order 3 or 4. All criteria are tested in order to find combinations
of criteria reaching total differentiation. Among these criteria, the fastest execution time and/or the
lowest memory cost are selected.

The differentiation criteria must be simple and easy to implement. For example, the first criterion,
P (the perimeter), is the number of cell frontiers between “1” (pressed sensor) and “0” (unpressed
sensor). The second criterion, S (the area), consists in counting all the “1” contained in a part. Here
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Figure 3.5: Memory cost.
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Figure 3.6: Memory cost according to execution times of criteria.

are the criteria used:

Contour-based criteria: P , the number of 1 having at least one neighbour at 0; A, the number of
1 having at least three neighbours to 0 and forming a right angle.

Region-based criteria: S, the number of 1 of the part; L, the maximum length between 1 of the
part; M , the sum of the number of bits that change; Y , the product of all Manhattan distances
between 1 etc. (all the criteria are presented in [31]).

We are interested by combinations reaching total differentiation, i.e. which give no error in part
recognition. The results show that the minimal combinations of criteria for matrices of size 3 × 3
are CCi = {{TM}, {TK}, {Y F}, {YM}, {Y K}, {Y E}} and for matrices of size 4 × 4 are CCi =
{{CFIDMRZ}, {CFILMRZ}}.

Figure 3.5 shows an example of memory consumption for all combination of the criteria T, Y, F,M,K,X.
For example, the combination TM reaches total differentiation with 37 bits.

Execution times necessary for each criterion are also measured. Figure 3.6 presents the scatter of
points of memory cost function of execution time of criteria. Execution times vary greatly depending
on the criterion.
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Figure 3.7: Overview of the calibrator.

3.2.3 Conclusions

This work presented an exhaustive framework allowing to identify the criteria reaching a total differ-
entiation among a set of criteria. The tests on groups of 3 parts show that some combinations of two
criteria for matrices of size 3× 3 reach total differentiation. We have also considered the memory cost
and execution time of the criteria and combinations of criteria that achieve a total differentiation.

One idea for future work is to allow a more flexible rotation (e.g. a 5◦ step-by-step rotation).
Another idea is to develop distributed algorithms for criteria in order to implement them in the smart
surface and compare their execution time. Both ideas are considered in the next sections.

3.3 Sensor network calibrator

One of the parameters of the smart surface is its number of sensors. Due to space restriction, this
number has to be chosen as wisely as possible: if it is overestimated, the design of the surface will be
impossible, if it is underestimated, the part differentiation will be impossible. It is therefore a crucial
parameter that has to be set, so we inquire about the calibration of the surface.

In the previous section we presented as future work the free rotation. In the current section we
present this free rotation. Another aspect of this work is that it does not do exhaustive research, but
only a few various models.

3.3.1 Calibrator overview

The calibrator, presented in figure 3.7, allows to define the number of sensors to be embedded into
the smart surface. It receives as input:

• the video from the camera which is positioned above the surface;

• the group of models which is recognised by the surface;

• the sizes of the sensors grid to test.

The calibrator provides as output the result of the differentiation, which is the answer to the following
question: what is the differentiation rate for each of the given sizes of sensors grid?

Figure 3.8 presents the structure of our calibrator. The calibrator has two stages.

Offline stage The goal of this stage is to find, for each group of models and each size of sensors
grid, the best combination of criteria for the differentiation of the models. It has five steps:
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Figure 3.8: Global structure of our calibrator.

1. all rotations1 of 1◦ are generated, MRoti, from the image of the model Mi, given as input, with
respect to the centre of the image, and all translations of width(MRot)/10 pixels are generated
from the image MRoti;

2. a grid corresponding to the positions of the sensors (middle point of the cell) is drawn on the
images;

3. the images are discretised in a matrix by affecting 1 if the sensor is covered by the part and 0
otherwise;;

4. unique masks corresponding to the initial matrix without the rows and columns that contain
only zeros are saved;

5. the values of each criterion are calculated for all masks of the model.

Among all the calculated criteria, the best criterion is chosen according to the differentiation rate,
the memory cost and the execution time (cf. previous section). Finally, this criterion and its masks
are given as input to the online stage.

Online stage In this stage, an attempt to differentiate the part on the surface is made using the
differentiation algorithm, the various size sensors grid given as input and the results of the offline
stage. It has four steps:

1. the camera takes a sequence of images of the surface and the part on it;

2. each image obtained is discretised (the image has only black and white pixels) to each grid
size given as input to the calibrator, and the mask of the binary representation of this part is
extracted;

3. the values of all combinations of the criteria of the masks are calculated;

4. the values of the criteria are compared with the values of the criteria of the models, in order to
differentiate the part.

1The OpenCV library was used for rotations and translations.
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Figure 3.9: (a) Definition of our models, (b)–(e) all groups of three models.

3.3.2 Experimental results

The aim of our work is to parametrize the smart surface, i.e. finding the right size of the sensors
grid to be used for differentiating groups of given models. For this, numerous experiments have been
performed on the surface. The differentiation is made by computing the different criteria and by
applying a differentiation algorithm (presented in previous section).

A set of four basic models have been chosen (see figure 3.9(a)). Starting from these models all
group of three models have been generated (see figure 3.9(b)–(e)). Several sizes of grid sensors are
used, as shown below.

Offline stage The offline algorithm is applied to each group of models. As already described, it
consists of:

1. Generate all rotations of 1◦ and all translations of 10 pixels of the model images (size 550x550);

2. Discretize these images using the following sizes of sensors grid: (15, 15), (20, 20), ..., (50, 50);

3. Save all unique binary representations of these images;

4. Compute criteria values for each size of sensors grid.

The offline stage consists of computing the values for differentiation criteria calculated for the
models M1,M2,M3. Figure 3.10(a) represents an example of results of the offline phase, with D,C,A
being the differentiation criteria for the models L,O, I, the last group in figure 3.9(e). Figure 3.10(b)
presents the tree generated from the results shown in figure 3.10(a).

Online stage The aim of this stage is to determine for each group of models, the size of a grid of
sensors that allows differentiating our models. For this purpose, the following values must be computed
for each group of models:

1: for each size of the sensors grid do
2: for each Mi ⊂ models of the group do
3: The differentiation rate for the Mi

4: end for
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Figure 3.10: An example of the result tree of criteria values according to a combination of criteria and
a set of models.

5: end for

The size of the sensors grid of the surface must be chosen so that it allow the best differentiation
rate. For that, the average differentiation rate of our models has been computed too. Figure 3.11
presents the differentiation rate of each model in the group of models {L,O, I} (see figure 3.9(e)),
and their average, as computed with this algorithm during experiments. It can be noticed that 35x35
sensors yield a higher differentiation rate in average. Similar results are obtained for the three other
groups {square, I, L}, {square, L,O} and {square, I, O} (presented in figures 3.9(b), 3.9(c), 3.9(d)).

Taking into account these results we can state that a sensors grid of (35, 35) is an appropriate
parameter for the smart surface because a high differentiation rate average is obtained.

3.3.3 Conclusions

This section presented a sensor network calibrator which allows to parametrize our smart surface
by determining the number of sensors giving the best results in terms of differentiation rate. Tests
performed on all groups of 3 out of 4 models show that a sensors grid of (35, 35) is appropriate.

3.4 Implementation and validation on a functional platform

After finding out the best criteria for part differentiation and the most appropriate size of sensor grid,
we turn our attention to implementation and validation of the algorithms produced on the functional
surface, i.e. with motion control included.

3.4.1 Part reconstruction and differentiation

Offline stage The offline stage is executed before using the smart surface and can be done on a
computer with a camera taking images of the models. A model is the shape of one of the objects
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Figure 3.11: Differentiation percentage of models L,O, I and their average.

(micro-parts), which can be placed on the smart surface. This stage allows to construct a database in
which each model is characterised by a set of criteria values, and this database is used as input in the
online stage. The method to generate this is identical to the offline stage presented in the previous
section. Among all criteria, only those with a good differentiation rate, low cost memory and fast
execution time (see section 3.2) are considered.

Online stage The aim of this stage is to differentiate, in real-time, an object on the smart sur-
face using criteria values previously calculated in the offline stage. For that, the surface must first
reconstruct the global view of the object, then apply the differentiation algorithm to differentiate the
object. Thus, the online stage is divided in two phases, reconstruction phase and differentiation phase,
detailed in the following.

Reconstruction phase. Once the object is on the smart surface, each cell knows its status (if it is
covered by the object or not), but it does not know the status of its neighbours. The cells covered
by the object are called active cells. Each active cell executes an iterative process with the aim
to reconstruct the binary representation of the object. This iterative process consists in two steps:
communication and computation steps.

In the communication step, all active cells are communicating with their neighbours. This com-
munication is done by sending a message. Each active cell sends a message that consists of a matrix
of bits, whose size is equal to the smart surface size (1 bit per cell). Initially, the matrix of each cell
is filled with 0, except for the bit corresponding to itself, which is set to 0 if no object is seen by the
sensor, and 1 if the object covers the sensor; in fact, in the first communication all the active cells
know only their status and nothing about the state of their neighbours. Throughout the re-iteration
of the communication phase, all the active cells will extend their state thanks to the received matrices
from their neighbours, until they reach a global view of the object.

The computation step consists in updating the view of each cell according to the views collected
from its neighbours in the communication step. This update consists in applying the union operator
between all received matrices and itself one. Formally, let MCell be a matrix corresponding to the
view of cell Cell and M1,1, M2,1, M3,1, M1,2, M3,2, M3,1, M3,2 and M3,3 the matrices corresponding
to the 8 neighbouring views respectively. The updated matrix of the cell Cell is obtained by applying
the equation 3.3:

MCell =
i=1,j=1⋃

i=−1,j=−1

Mi,j (3.3)

Figure 3.12 shows, as example, the matrix of the four active cells during each computation step.

It can be proved that after N steps (N is the height plus the width of the object), this algorithm
converges and each cell has the binary representation of the object currently on the smart surface.
The number of steps is therefore not dependent on the smart surface size.
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Figure 3.12: Example of the matrix of the four active cells during each computation phase.
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Figure 3.13: The three different objects to sort.

Differentiation phase. Once the binary representation of the object is obtained, each cell computes
the criteria values of the object. These values are compared to the criteria values for each model in
the database, computed in the offline stage. If there is a criterion or a combination of criteria which
uniquely identifies the object (either difference of values is null, or below a specified threshold), then
the object is considered to be differentiated.

The differentiation block sends to the control block the information of the differentiation result and
the position of the object (coordinates of the bounding rectangle) on the smart surface. The control
block takes the responsibility from now on, either to move the object to its destination (if the object
has been differentiated), or to give the object a small movement in order to retry differentiation.

3.4.2 Experimental results

We chose a set of 3 different objects to carry out the experiments, shown in figure 3.13. The O and R
objects must be sent to the east edge of the surface, the H object to the west edge. This task could
fit for example in the feeding of assembly line workstations.

Figure 3.14 shows an image sequence extracted from a video made during the experimental surface.
First, an object is placed on the surface. The distributed architecture maintains it in levitation by
moving it in the centre of the surface until the images of the object allow to identify it. Finally, when
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(a) t=0.4s, the object is not
identified

(b) t=2.4s, the object is still
not identified

(c) t=3.4s, the object is
identified and the valves on
its left are opening

(d) t=4.1s, the object is
moving toward the west
edge of the surface

Figure 3.14: Image sequence of an experiment with the H object (dark crosses represent inactive
sensors, light squares represent active sensors and dark circles represent opened valves).
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Figure 3.15: Abscissa of the center of the object according to time for three experiments with different
parts.

the object is identified (H in this case), the controllers open the correct valves in order to convey the
object to the desired direction. Finally, when the object is collected outside the surface, another one
is placed on it and the process restarts. All this can also be seen in figure 3.15, which shows the
trajectory (abscissa projection) of three different objects placed successively on the surface: It takes
a few seconds to recognise it, afterwards it is moved to the appropriate destination.

In these experiments we use a set of 17 criteria sorted by their relevance for differentiation. When
an object is on the surface, cells calculate the values of the first criterion and compare them to the
values of the same criterion in the database. If they successfully differentiate the object (as being of
type R, O or H), the process stops, otherwise it passes to the following criterion. If no criterion is
successful, the object is called not differentiated NoDiff.

In practice however, an object can sometimes be wrongly differentiated. To cope with this, cells
execute several times the complete recognition process, and use a predefined threshold (e.g. recognised
at least 10 times as part H) to finally consider the object as being of that type. Note that in these
experiments we aim not to obtain a fast differentiation but to correctly differentiate an object using
a set of values obtained from emulated sensors.

Figure 3.16 shows the differentiation result obtained for the distributed architecture by observing
several postures of the object before identifying it. The differentiation threshold is arbitrarily set to 60.
In each figure we notice that, even if sometimes an object is wrongly recognised, a differentiation
threshold greater that 60 gives the correct result for H, O and R.

The process is highly reproducible and robust. We performed dozens of experiments for each of
the objects. It can be noticed that for each experiment, the object was successfully identified and
conveyed.
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Figure 3.16: Differentiation result for experiments when the H, O, and R object respectively is put on
the smart surface.
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3.4.3 Conclusions

This section presented algorithms to reconstruct a shape based on distributed information and to
recognise it. Results show that the algorithms proposed are really able to recognise the micro-parts
and to convey them to the desired border of the real smart surface.

3.5 Enhanced part differentiation

The previous section proposed a distributed total part differentiation, which takes place after part
reconstruction. In this section we propose an enhanced distributed differentiation method based on
gaps.

Our papers where the enhanced algorithm is presented [66, 67] presented also a formalisation of
the distributed state reconstruction phase, and a smart surface simulator to evaluate the distributed
algorithms. Since these two tasks were done by another laboratory involved in the project (LAAS), I
do not present them here.

3.5.1 Part differentiation with gaps

We first note that the value of the criteria can vary according to the orientation and position of the
part on the smart surface. In the case of part rotation for example, we have observed that the value
of criterion surface of a 3x3 square (where the unit of distance is the length of a cell) can vary from
9 to 13 according to the orientation of the part on the surface. In the following, we present two new
approaches for part differentiation, both based on gaps.

The first approach relies on the use of a single reference position for each model. Each cell
computes for each criterion the gap between measured value of the criterion for the current position
of the part on the smart surface and value of the same criterion for a single reference position of the
models (latter values were stored in the database during offline stage). To increase usefulness of this
approach, only a subset of well known criteria like surface or perimeter of the part can be considered,
whereas criteria that magnify tiny differences between parts, like product of the differences between
consecutive columns and consecutive lines, are discarded. Let q be the number of considered criteria,
m the number of models, ri(j) the reference value (computed offline) of ith criterion of the jth model,
and ci the value of the ith criterion of a part on the smart surface. Then all cells compute concurrently
and independently the following gap for the part that covers them:

g(j) =
1

q

q∑
i=1

∣∣∣∣ri(j)ci
− 1

∣∣∣∣ , j ∈ 1, . . . ,m (3.4)

The second approach relies on the use of a set of reference positions for the models. We take into
account rotations of parts. Without loss of generality and for symmetry reasons, only rotations by
1◦ to 45◦ are considered. Let D = {1, . . . , 45}, rdi (j) the reference value of ith criterion of the jth
model with d◦ angle (computed offline), and C(j) the set of all reference values for jth part C(j) =
{(rd1(j), . . . , rdq (j)), d ∈ D}. Then all cells compute concurrently and independently the following gap
for the part that covers them:

g′(j) = mind∈D

{
1

q

q∑
i=1

∣∣∣∣∣rdi (j)

ci
− 1

∣∣∣∣∣
}
, j ∈ 1, . . . ,m (3.5)

We note that the former gap g presents the advantage of requiring limited memory and small
computing time, while the latter gap g′ permits one to expect better part differentiation; this is
particularly true in the case where parts can have any orientation on the smart surface.

The decision concerning part differentiation at each cell relies on the respective values of the gaps.
The part j that is chosen corresponds to the gap g(j) or g′(j) that is the closest to zero.

The method with gaps is particularly interesting when some cells present faults, e.g. sensor faults
(giving a faulty local state) or processor faults (leading to erroneous discrete representation of a part),
or when parts can be altered (i.e. slightly modified).
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Criterion Sq (%) I (%) L (%) Average

S 37.0 52.0 57.3 48.7
A 33.5 40.5 48.5 40.8
AS 59.5 74.0 68.0 67.1

Table 3.2: Differentiation rates for criteria S and A with total differentiation.

Criterion Sq (%) I (%) L (%) Average

S 100 99.0 98.0 99.0
A 100 99.0 78.0 92.3
AS 100 100 96.5 98.8

Table 3.3: Differentiation rates for criteria S and A with first gap g.

3.5.2 Simulation results

The simulator written by our colleagues allows to build a smart surface with any size and create various
basic parts like squares, rectangles, parts with L shape or I shape and so on, that will become models.
It also permits to place the generated part everywhere on the smart surface. Shapes can be rotated
on the smart surface and sensor faults can be introduced. One can also choose particular criteria
and a differentiation method, i.e. a gap-based method or the total differentiation method presented
in previous section. After choosing all these parameters, the multithreading simulator executes the
algorithm for each cell and displays the results of the part differentiation phase, and some statistics.

We compare the gap methods and the total differentiation method presented in the previous section
using the results given by the simulator.

We consider three parts: a square, referred to as the Sq part, an L shape part and an I shape
part. The three parts have been randomly placed on the surface 200 times, leading to 200 draws
(images) with the simulator. For each draw, the simulator computed the values of 17 criteria. The
criteria were afterwards sorted according to the differentiation rate and only the criteria with the best
differentiation rates have been selected. The two top criteria are S and A, where S denotes the surface
and A the sum of angles of type “V” (see section 3.2).

Table 3.2 displays the results for the total differentiation method. For 200 draws, we note that
the criterion S alone correctly differentiated the part Sq in 37% of cases. The combination of S and
A criteria give better results: The part Sq was correctly differentiated in 59% of the cases, and the
average differentiation rate increased from 40% (for A alone) and 48% (for S alone) to 67% (for AS).

Table 3.3 displays the results with gap g and table 3.4 the results with gap g′:

• With a single criterion, e.g. S, the average differentiation rate can reach 99% with g (first row
of table 3.3) and 99% with g′ (first row of table 3.4). We recall that the average differentiation
rate is 48% with the total differentiation method (first row of table 3.2).

• With a combination of criteria, the average rates are 98% (third row of table 3.3) and 92% (third
row of table 3.4) for g and g′, respectively. We recall that the average differentiation rate is 67%
with the total differentiation method (last row of table 3.2).

We conclude that the gap-based differentiation methods give better results than the total differ-
entiation method when parts can have any orientation on the smart surface. Additionally, in some
cases one criterion alone may be sufficient to reach almost 100% differentiation rate.

Criterion Sq (%) I (%) L (%) Average

S 100 99.0 98.0 99.0
A 100 99.0 78.0 92.3
AS 100 99.5 79.0 92.8

Table 3.4: Differentiation rates for criteria S and A with second gap g′.
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3.5.3 Conclusions

This section presented two new distributed part differentiation methods based on gaps. A simulator
was used which creates the surface and models, and places randomly a model on the surface. The new
differentiation methods give clearly better results than the previous differentiation method.

3.6 Tree-based storage

The previous section presented a new type of differentiation methods based on gaps. In this section
we focus on how the database is stored in cells and what messages are exchanged between them.

Section 3.4 described the matrices created during the reconstruction phase and exchanged between
neighbours. A matrix contains the state of the whole surface. The amount of data communication
traffic is thus fixed and the updating method is simple. The matrix, however, has redundant informa-
tion.

In the current work, we analyse a new data structure for the database which stores information
about the models to be differentiated, and for the messages exchanged between neighbours. The new
data structure is a tree-structured array, and, compared to matrices, seems a better way to represent
knowledge. The array has a variable length and each value gives the state of the sensor at a relative
position: north, west, south, and east. In the process, we also needed to update the online stage (both
reconstruction and differentiation phases). Whereas in the previous approach each model was stored in
the database rotated at various degrees, in the current approach each model is stored in one exemplar
only. Thus the new structure avoids redundancy and frequent comparison between the object and
each representations of a model. Also, a tree can be relatively easily to construct, and sub-trees can
be cut off or attached to another node (distribute the database on several cells) to actually form the
processes of knowledge composition and decomposition.

Representing knowledge in a tree-based structure is an idea which can be applied to other fields
where processing power and storage capacity are limited. This is for example the case for ubiquitous
devices [48], also known as u-objects [130, 131], like mobile devices, sensor devices, RFID devices, wire-
less devices [72, 104] etc., which are increasingly getting more common and smaller, even invisible to
the naked eye [190]. Embedded Intelligence Entities (IE) (data + knowledge + reasoning engine) [98] in
u-objects may be one theoretical approach to represent information for such devices, but at the present
time they are impractical. However, Intelligence Entity Sharing (IES) from external systems is a prac-
tical alternative approach. In this approach, a u-object can request/rent/borrow whenever necessary
an intelligence entity from an intelligence entity pool (IEP) to provide intelligent/smart/autonomic
support or services. The intelligence entity pool needs an appropriate knowledge-representing struc-
ture, with which the intelligence entity can be flexibly composed and decomposed.

3.6.1 Tree creation and transformation

As already written, both phases of the online stage have to be updated to use trees.

Reconstruction phase. The root of a tree is the state of the cell itself, and its child nodes are the
trees of its four neighbours. The state of a cell is active when an object is above its sensor, or passive
when there is no object above it.

The tree generation process, leading to the reconstruction of the current object image, takes the
following steps:

1. Each active cell generates its initial tree-structured array which is only composed of its current
state.

2. Each active cell sends to its four neighbours its tree, removing the values corresponding to the
destination (see figure 3.17).

3. Each cell receives trees from its four neighbours.

4. Each cell updates its tree by replacing its four children with the four trees received.
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Figure 3.17: The tree-structured array of cell “b” and the three subtrees sending to cell “a” in the
object reconstruction process.

5. If the leaf values of the received trees are all 0 or the trees do not contain any updates as no
sensors have changed state, the reconstruction phase is over. If not the reconstruction algorithm
continues with step 2.

As a result, the tree of each cell expands until the whole object is reconstructed.
As several different paths exist from one cell to another, a cycle can be created leading to an

infinite growth of the trees. Such cycles are avoided through an algorithm explained in [171].
Figure 3.18 shows a complete example of the reconstruction process of an object. In this figure,

each square is a cell in the smart surface, and each cell has four neighbouring cells denoted as “N”,
“W”, “S”, and “E” based on their relative positions. In this example, there are four active cells, named
“a”, “b”, “c”, “d”, and each cell receives the state of the other cells in four communications. Among
the four neighbours, one of them is the destination node which corresponds to the parent node, and
the other three are regarded as child nodes. Therefore, all nodes except the root have three children,
and a line without square represents the position of the parent node.

Differentiation phase. We recall that the database with the models is constructed during the offline
stage. In the previous approach, a number of criteria corresponding to each model are generated and
stored in the model database. Instead, in the current approach, each model is stored as one binary
array which corresponds to a 4-branch tree.

To simplify the differentiation process, the root cells of all the arrays in the database have to be
fixed as far north as possible, then as far west as possible. Therefore, the array generated in the
reconstruction phase has to be transformed into a unique array with the most northern and western
cell as root cell. This is done through a repetitive transformation, described here briefly.

The cell scans the tree-structured array from the most left. Since the first bit is always the state
value of the cell itself, it starts checking the second bit. If its value is 1, it means the cell has an active
north neighbouring cell; it transforms then the tree so that the north neighbouring cell become the
root cell. Figure 3.19(a) illustrates how the root cell “b” is changed to its north neighbouring cell “a”.
The algorithm to change the array 11000001001000 to 10010010010000 is the following:

1. adding 1 to the head of the sub-array (001001000) of cell “b”,

2. inserting them (1001001000) to the position (pointed by an arrow) between the 4th and 5th bits

3. and finally deleting the first bit (1)
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If the second bit value is 0, no active cell is found at north. The transformation algorithm checks
whether the cell has an active west neighbouring cell using a similar algorithm, shown in figure 3.19(b).

These steps are repeated until the root becomes the most northern and western cell. Then, the
array is numerically compared with all the models, and based on the result the control block will send
the object to the destination, or will rotate it to retry differentiation.

3.6.2 Numerical results

We evaluated the proposed approach in terms of the number of communication iterations, the amount
of communication traffic, the length of computation time and the size of the memory footprint, and
compared it with the previous approach presented in section 3.4. The greatest difference between the
two approaches appears on communication traffic [171], presented in the following.

Communication traffic

As an example, the amount of communications in a 10 × 10 smart surface is calculated. The traffic
amount is variable in the proposed approach, because the message consists of the states of cells known
by the sender and the number of those cells increases with time. The amount of traffic for the example
in figure 3.18 is as follows. In the first step, all the messages have 1 bit. In the next step, the active cells
send 4 bits, because the messages contain the states of their three neighbours (without the destination
node). After that we show only the amount of the messages from cell “b” to cell “a”, because this
amount depends on the sender and receiver. Cell “b” generates the sent message for cell “a” as shown
in figure 3.17. The amounts are 4 bits, 7 bits, and 10 bits, from top to bottom. This amount needs
to be multiplied by four, since trees are sent to the four neighbours. The results for the other nodes
are obtained in a similar way. Summing up, the amount of data communication traffic in each active
cell is (1 + 4 + 7 + 10)× 4 = 88 bits, and the amount of the traffic in the network is 88× 4 = 352 bits
(there are 4 active cells).

In the previous approach, 100 bits of data are sent between cells for communication. Since active
cells communicate with their four neighbours, each active cell sends 400 bits of data at a time. If there
are four active cells as shown in figure 3.18, the cells need to communicate 4 times in order to get all
active values, i.e. the amount of the traffic is 4 × 4 × 400 = 6400 bits, about eighteen times greater
than the proposed approach.

3.6.3 Conclusions

The current work aimed to improve the distributed control of the smart surface by adopting tree-
structured arrays. Representing the shapes as tree-structured data has several benefits, the most
notable being reduced communication traffic. Particularly, further reduction in memory footprint can
be achieved by distributing the database to several cells, i.e. each cell store only a part of the database,
with the disadvantage that communication traffic will increase in order to exchange information be-
tween cells about the database values.

3.7 Conclusions

This section presented the work done as a member of the Smart surface project. At first, we analysed
criterion performance in the general case, afterwards we improved it by free rotation/translation and
made it specific to the models used on the surface, and implemented it on a real surface with motion
control. Experiments were successful, i.e. objects were differentiated and moved to the appropriate
destination. Finally, we proposed a two gap-based methods with faster differentiation time and anal-
ysed an original tree-based storage for model database allowing a reduced communication traffic and
allowing database distribution over several cells.

Even if the fabrication of the miniaturised smart surface proved difficult, the project was successful
from our perspective since it led to a real and functional surface prototype, both in fabrication and
usage. It also shown that a cooperation among several scientific disciplines is harder, but can succeed.



Chapter 4

Communication in wireless
nanonetworks

4.1 Introduction

Since end of 2013 I inquire about communication in wireless nanonetworks. Nanotechnology is a
promising technology still in its infancy. It involves objects at nanometric scale, i.e. between 1 nm
and 1000 nm. I am not interested in nanomaterials, which are already being studied and fabricated,
but in communication between nanodevices. A nanodevice alone has a limited communication range,
limited energy, limited processing capacity etc. Networking several nanodevices improve the system
being considered. Networking them means making them communicate. Currently, two communication
technologies are being considered for nanodevice communication: molecular and electromagnetic. The
former uses molecules to propagate information, while the latter uses the classical electromagnetic field
waves. I am interested in electromagnetic type of communication.

Electromagnetic communication using nanodevices have for a long time been ignored. The reason
is that a classical nanoantenna works at very high frequencies, which are useless in practice. Indeed,
following antenna theory, the size of a conventional (metallic) antenna resonating at a given wave-
length λ should be at least λ/2. So an antenna of size 1 µm (the maximum size of a nanodevice)
can process signals at a maximum 2µm wavelength. The frequency is f = v/λ, where v is speed of
propagation of wave. We consider a free space, so we will consider v = c, the speed of light. Therefore:

f = c/λ =
3× 108m/s

2× 10−6m
= 1.5× 1014 Hz = 150 THz (4.1)

Communication using frequencies above 150 THz generates big propagation losses, which leads to
very short transmission range, of the order of micrometers. Therefore, they cannot be used in practice.
Furthermore, at so high frequencies classical antenna theory needs to be revised.

To sum up, the choices we are faced are the following:

• either use a nanoantenna working at 150 THz or more, which makes it useless for communication
in practice;

• or go down to 1 THz and use antennas of 150 µm or more, so we fail to create a nanodevice and
use a microdevice instead.

A third choice appeared in 2004, with the first isolation of graphene, a material defined as a
one atom thick two-dimensional sheet. Andre Geim and Konstantin Novoselov at the University of
Manchester won the Nobel Prize in Physics in 2010 “for groundbreaking experiments regarding the
two-dimensional material graphene”1. Graphene has remarkable characteristics, such as 100 times
stronger than steel at same weight and conducts very efficiently electricity2.

1http://www.nobelprize.org/nobel_prizes/physics/laureates/2010
2http://en.wikipedia.org/wiki/Graphene
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Two laboratories in the world work on antennas of graphene: BWN (Broadband Wireless Net-
working Lab) at Georgia Tech (United States) directed by Ian Akyldiz, and N3Cat (Nanonetworking
Center in Catalunya) at Barcelona (Spain), the latter being created by the first lab too. I am in
contact with a former Ph.D. student of N3Cat (Josep Miquel Jornet) who defended his Ph.D. thesis in
2013 (under Ian Akyldiz’s guidance) on nanowireless communication using graphene-based antennas.

Jornet made several studies, e.g. [108, 110], and noticed that nanoantennas made of graphene
allow some specific waves (surface plasmon polariton, SPP3) to propagate at frequencies higher than
conventional antennas at the same size. The frequency allowed is 100 higher than of classical antennas.
Comparing with the result given in equation 4.1, this means that a graphene-based nanoantenna
(1 µm) can process signals at 1.5 THz. This solves the puzzle we faced about nanoantenna and usable
frequencies.

The next step after nanometric antenna is to a physical communication layer. Given the constraints
of these antennas, such as there is not enough energy to transmit continuously, Jornet conceived a
specific physical protocol, similar to widely-used IR-UWB (Impulse Radio Ultra-Wide-Band) commu-
nication. In Time Spread On-Off Keying (TS-OOK) [109], each bit of data is sent at regular pace ts.
Bit 1 is sent using an energy pulse of duration tp, and bit 0 is simply not sent (no transmission).
ts should be much larger than tp, e.g. 1000 times.

The next step after physical layer is network, eventually transport and application layers. Current
research is stopped at this step, i.e. there is no network layer proposed for nanodevice networks.
Therefore, this is an interesting topic to work on.

With regard to TCP/IP or OSI layers, my research has always focused on upper layers in the
networking stack: network, especially transport, and application, with application on video transmis-
sion, as presented in previous chapters. In order to have a feeling of the new research field, my first
work was to create some applications for nanonetworks, especially using video. There is however no
nanoantenna built, so no experiment can be done for the moment. Therefore, I turned my attention
to simulation, work presented in [56]. Afterwards, I exploited a detail in nanocommunication with
TS-OOK (sending a bit 1 consumes power, but sending bit 0 does not, as described above) and pro-
posed a method to reduce the number of bits 1 in data to be sent, allowing to reduce the energy and
decrease channel interferences among others. This work is still under review [203].

4.2 Nanonetwork simulation

Video streaming is a growing application on the Internet, and its growing pace is not slowing down.
There have been a tremendous amount of work on video streaming over the Internet but nobody has
ever studied video streaming over a nano-wireless network. We think that video streaming could be
a potential application for nano-wireless networks and we know that video streaming is a challenging
application for networks. First, video streaming is a real-time transmission meaning that it is sensitive
to delay and jitter. Second, it is often better not to retransmit losses to avoid video freezing. That is
why we wonder whether nano-wireless layers need to be tuned for video streaming.

This section studies, through simulation, different scenarios of video transmission over a nanowire-
less network.

4.2.1 Introduction

According to the last Sandvine report [170], in North America, the video streaming in fixed internet
connections uses about 50% of the downstream bandwidth, far before the next usage which is HTTP
with about 10% of the downstream bandwidth. This trend on video streaming predominance can also
be seen for the mobile access. The first usage of downstream bandwidth on mobiles is for YouTube
with 17% but if we sum up all video usages (YouTube, MPEG, Netflix) we reach 31%. This trend is
also true for Europe, South America and Asia but to lesser extent. This shows that video streaming
has become the first usage within the Internet.

3SPP waves are confined electromagnetic waves coupled to the surface electric charges between a metal and a dielectric
material.
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The Internet of Things (IoT) [8] federates the things that need to communicate and their re-
quirements are different from traditional computers and humans. Some things will still need a high
bandwidth and a low latency but most of them only need low power communications and, low band-
width and high latency are not an issue. IoT is therefore growing both inside and aside from the
Internet creating a new way to communicate.

Advances in micro-electro-mechanical-systems (MEMS) are enabling the design and fabrication of
distributed intelligent MEMS (DiMEMS) [30]. A node in a DiMEMS system is basically composed
of actuators, sensors, a processing unit and communication capabilities, which makes it a micro-robot
integrated in a much larger ensemble, the IoT.

The appearance of nano-electromagnetic communications, referred to as nano-wireless in the rest
of this section, changed the perspectives for communicating between small things, making possible
communications between miniaturised elements, with the internet of micro-things [28], or even smaller
elements, with the internet of nano-things [107]. Nano-wireless communications have been first pro-
posed in [5], later detailed in [6] using graphene nano-antennas and been used in some micro-robot
applications [25]. These antennas are very small and are able to radiate in the terahertz band.

Video streaming is therefore possible between very small things but remains complex due to the
nature of Terahertz band. Propositions have been made for defining an energy-efficient physical
layer [189] but transmitting video on top of these different layers is still an open issue (but has been
studied in ultra-wide band networks in [36]). In fact, we think that a cross-layer approach is needed in
the design of the communication layers of nano-wireless communications. This means that applications
have to be proposed and tested. In a previous work [24], we have studied the integration of wireless
capabilities in micro-robots of the Claytronics project, showing the enhancement created by wireless
communications, but not using nano-wireless communications yet. Also, video streaming at small
scale is of importance in many fields, e.g. biological, defense and security, under the assumption that
tiny cameras could eventually be embedded in the environment (wall, body etc.)

This work is at the conjunction of these four research fields: micro-robots, IoT, nano-wireless
communications and video streaming, and presents a preliminary study on the possibility to stream
video between micro-robots viewed as IoT elements and using nano-wireless communications. The
objective is to learn some lessons on the efficiency of the current nano-wireless physical layer in order
to enhance it afterwards. We use two NS3 plugins: Nano-Sim, to simulate the nano-wireless physical
layer, and Quality-of-Experience (QoE) Monitor, allowing to stream real video sequences inside NS3
and to evaluate the result in terms of video quality.

4.2.2 Background

We noticed that the only way to simulate nanonetworks is to use NS3 simulator and an external plugin
(module), Nano-Sim; a video transmission external plugin also exist, QoE Monitor. NS3 [141] is the
follow-up of NS2 [140], the classical network simulator used by researchers in computer networks. NS3
is supported by an active community that works on many topics (groups), and researchers can validate
their contribution by comparing the existing ones. In a nutshell, NS3 uses a discrete-event model and
simulates numerous network devices, protocols, applications at all OSI levels, and provides utilities to
visualise results.

Nano-Sim4 [148] was written at Technical University of Bari in Italy and simulates very roughly
a nanonetwork. It has been used to test health care applications and it comprises three types of
WNSN devices: nanonodes (sensors), nanorouters (with larger capabilities than nanonodes, and can
route information) and nanointerfaces (large capabilities, can process data and act as a gateway to
another network). It implements a simple application layer (Constant Bit Rate CBR), network layer
with flooding and random routing protocols, MAC layer and physical layer (using Terahertz spectrum
using TS-OOK modulation [6]).

Quality of Experience (QoE) Monitor5 [168] was written at University of Modena and Reggio Emilia
in Italy and features an H264-encoded video file reader, transmit it using RTP protocol through NS3,
and a valid video writer which reconstructs a valid video file from the received data. It also computes

4Downloaded from http://telematics.poliba.it/index.php/en/nano-sim
5Downloaded from http://sourceforge.net/projects/ns3qoemonitor
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Figure 4.1: The two nanonetwork topologies used in simulation: on the left side the 2-node topology,
on the right side the 18-node topology.

PSNR and SSIM metrics based on the differences between the original video at the transmitter side
and the reconstructed video at the receiver side. When data is lost on the network, entire frames
can be lost too. This fools PSNR and SSIM metrics, since they work on analogous frames in original
and received videos. In order to have the same amount of video frames and yield a valid video data,
in QoE Monitor the receiver reconstructs a valid video by replacing all the lost packets with dummy
data.

4.2.3 Simulation setup

The two modules did not work out of the box. We used an NS3 version (3.16) which worked with QoE
monitor. A first modification was to make QoE monitor work with recent version of libav (a fork of
ffmpeg), which is known to change often its API. A second and most difficult challenge was to make
Nano-Sim and QoE monitor work together. In both modules, packet sending is done deep inside the
module. Our solution was to hack QoE code to replace QoE packet sending with calls to Nano-Sim
packet sending. The source code solving these issues is freely available on Internet6.

Unfortunately, we met limitations, simplifications and bugs in the two modules unsolved for the
moment, for example:

• bug: Nano-Sim does reordering of packets whereas it should not. For example, in a simple
network with two nodes (source and destination), sometimes a packet B arrives before a packet A
which was sent before B.

• limitation: QoE monitor receiver discards a fragment if the previous fragment has not been
received, otherwise said packet reordering leads to packet loss. As such, all packets arriving
in disorder are replaced by null data in the received data. Real video clients reorder received
packets instead. The end result is that the quality of received video in QoE monitor is less than
in reality.

• simplification: Nano-Sim has a very simplistic propagation model (all or nothing), where packets
are received if they are inside a circle of some radius from the sender, or lost otherwise.

For all these reasons, we consider our work as a rough but first study on video transmission over
nanonetworks.

We used two network topologies for the tests, shown in figure 4.1. The first has two nodes, and
is used to check the simulator with the two modules (QoE monitor and Nano-Sim). The second has
one source, one destination and 16 relays, and is used to discover how communication is done in a
multi-hop network. All the nodes are motionless. The distance between two consecutive nodes is 1 cm.
The communication range for all nodes is set to 1.2 cm, and was chosen so that the network exhibit
a connectivity of 4 neighbours, and that there are several hops (more precisely 5 hops) between the
sender and the destination, and contention in the network during the communication. The molecular
communication is used, with flooding routing protocol and TS-OOK modulation. The pulse duration
is 100 fs and the pulse interval is 10000 fs, i.e. 100 times greater than pulse duration. The transmitting
power is 1000 fW.

6http://eugen.dedu.free.fr



4.2. NANONETWORK SIMULATION 97

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120  140  160

P
S
N

R
 (

d
B

)

Frame number

Execution 0
Execution 1
Execution 2
Execution 3
Execution 4
Execution 5
Execution 6
Execution 7
Execution 8
Execution 9

Figure 4.2: The PSNR for 2-nodes network.
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Figure 4.3: The PSNR for 18-nodes network.

There is one flow in the network. The video file used as input is the classical “news” sequence in
CIF resolution. The file starts to be sent at second 2. The simulation ends when the file streaming
finishes. We executed ten times each of the two topologies.

4.2.4 Simulation results

The PSNR metric between the received video and the sent video for 2-nodes network is presented in
figure 4.2. It can be seen that all the executions give similar results. Also, the PSNR has a relatively
low value (20 to 35 dB) and is quite regular, knowing that 20 to 25 dB are considered to be acceptable
values for wireless transmission quality loss. No packet is lost on the network; instead the reordering
done by Nano-Sim, as presented in previous section, makes QoE monitor drop packets at receiver.
The abrupt changes in PSNR plot, appearing at frames 45, 80 and 130, correspond to abrupt scene
changes in video file. The PSNR for 18-nodes network, given in figure 4.3, is similar to the one for
2-nodes and exhibits the same properties.

The SSIM metric for 18-nodes network is presented in figure 4.4. All the executions give similar
values. SSIM curve varies much more than PSNR curve. As for PSNR, SSIM curve varies more at
abrupt scene changes, but it is less visible, except for frame 130. The SSIM curve for 2-nodes network
is similar to 18-nodes network.

For video transmission, another important parameter is how the packet delay changes, because it
fixes the receiver buffer size. The jitter (the difference between packet delays) is presented in figure 4.5.
It shows that the jitter varies generally between 30 ns and 70 ns. These values are 3 orders of magnitude
lower than what is currently found on Internet, which are of order of tens of ms. As a consequence,
the buffers at receiver side could potentially be very smaller than the ones on Internet. However, more
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Figure 4.4: The SSIM for 18-nodes network.
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Figure 4.5: The jitter for 2-nodes and 18-nodes networks.

importantly, the figure shows that the jitter is identical for all executions, either 2-nodes or 18-nodes.
This is an unrealistic result, since in reality the delay and the jitter do depend on the number of hops
between sender and receiver (1 hop in 2-nodes, and 5 hops in 18-nodes network). This result shows
the limits of Nano-Sim module for video transmission.

4.2.5 Conclusions

This section presented a study on video transmission over nanowireless networks. We tried to do
experiments, but no physical device exists for that. The only possibility to study it is through sim-
ulation, using the NS3 well-known network simulator and the QoE monitor and Nano-Sim external
modules. PSNR and SSIM quality metrics of the received video, together with jitter graphs have been
presented using a 2-nodes and a multi-hop 18-nodes network.

This study is the first to tackle video transmission over nanonetworks. It showed the limitation
of the current tools and their models. For example, the jitter results of Nano-Sim and the losses at
receiver side in case of unordered packets are not realistic. The main result is that the research in this
field needs better models and tools.

4.3 Nanonetwork energy efficiency

4.3.1 Introduction

In this section we introduce a source coding algorithm for nanosensor networks whose goal is to encode
the data to be transmitted in order to increase the number of bits 0 in detriment to 1s. Data is divided



4.3. NANONETWORK ENERGY EFFICIENCY 99

in fixed size symbols. In a dictionary, more often used input symbols are mapped to output symbols
with fewer bits 1. Before transmitting data, sender replaces input symbols with output symbols, and
the receiver replaces received symbols back to original symbols. In the process, sender takes also into
account the distance between 1s in output symbols. Depending on input data, bit 1 reduction can go
up to 100%. We also analyse its energy efficiency and transmission robustness using several types of
real files.

4.3.2 Related work

Compression techniques are usually used to reduce the redundancy in the information. A classical
compression technique is Huffman coding, where the most often used symbols are encoded with fewer
bits [154]. Our proposed method is a variation of Huffman coding. In both algorithms, symbols are
ordered according to their frequency on input data. However, whereas in original Huffman algorithm
the more frequent symbols have fewer bits, in our method the more frequent symbols have the same
number of bits, but fewer number of 1s.

There are many variations of Huffman code. Abrahams [1] gives a comprehensive list. She considers
fixed-to-variable, and variable-to-fixed source coding. Our method is fixed-to-fixed. Input data can
be infinite, can have lexicographic constraints (Hu-Tucker problem), the codeword length can have
constraints, coding can have unequal cost code symbols (Karp problem). Our method is similar to
the latter variant, Karp problem. Whereas in classical problems the cost of a symbol is the number
of its bits, in Karp problem the cost of a symbol depends on its bit values, i.e. the cost of symbol i
is c(0)M(i) + c(1)N(i), with M the number of bits 0 in symbol i, N the number of bits 1, and c(0)
and/or c(1) different than 1.

More specifically, there have been some works in energy efficient coding to reduce the frequency of
occurrences of bits 1 that can be used in wireless networks. Erin et al. [69] proposed Minimum Energy
(ME) coding to transmit more frequent symbols using fewer bits 1 in wireless communication. Our
method is similar, with some differences due to characteristics of nanosensor networks. For example,
codewords with the same number of bits 1 are not ordered in Erin’s method, whereas in our method
they are ordered according to the distance between 1s. This is because in nanosensor networks it is
preferred to have greater distance between adjacent 1s, for two reasons. First, to have more relaxed
constraints for energy harvesting, since a larger distance between adjacent 1s gives the sensor more
time to harvest the energy for the next pulse transmission [189]. Second, to have a more relaxed (less
activity) channel with respect to absorption noise in high traffic; for example, it is better to transmit
1010 sequence instead of 1100, because in the first case when sending the second bit the noise from
the first bit transmission still exists in the channel. Erin’s article is more theoretical, whereas ours
presents numerical results with different values of symbol size on various types of input data.

Prakash et al. [153] use the small part of ME coding by encoding m bits into n bits (n > m) with
weight 1. This method requires more bandwidth since the size of output is bigger than input. Chi et
al. [43] extend Prakash’s method using larger m and n, and provide more numerical proofs. Chi et al.
[44] use variable length code with minimum average code weight.

Kim et al. [113] propose a Modified Minimum Energy (MME) coding where codewords are divided
in several subframes and a bit is added in front of each subframe: 1 means no high bits in the subframe,
and 0 means at least one high bit in the subframe. The purpose of subframes is to allow the receiver
to sleep for the duration of subframes with only 0s, thus reducing energy on receiver. This gives good
results only in specific types of data, where adding a bit of data still decreases the energy; moreover,
it increases data size.

ME and MME codings are analysed in the context of Coded Division Multiple Access (CDMA)
wireless sensor networks (WSN) [75]. Contrary to this, our paper proposes a variant of ME which
takes into account some characteristics of wireless nanonetworks.
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Symbol Frequency
ai(1) n(1)
ai(2) n(2)

...
...

ai(M) n(M)

Table 4.1: Step 2 in NME coding.

4.3.3 Nanonetwork minimum energy coding

NME algorithm

Nanonetworks based on electromagnetic communication using TS-OOK modulation in Terahertz band
have large bandwidth. The limitation in such networks are energy, computational complexity, and
transmission range. Networking nanosensors in multi-hop fashion allows to reduce the computational
complexity and to increase the transmission range. In TS-OOK modulation, 1 bits are transmitted
with a femtosecond-long Gaussian pulse, with total energy 0.1 aJ [109], while 0s are transmitted as
silence (no transmitted signal).

In this paper, we propose Nanonetwork Minimum Energy coding to reduce the energy usage for
communication between nanosensors. It is a simple algorithm, suitable to the small power available
in nanosensors. Data is transmitted from sender to receiver(s) as bits 0 and 1, and received as bits 0
and 1. The idea is to transmit the most often used blocks of bits with fewer 1s, in order to decrease
the energy used to send the data. The algorithm for nanosensor networks is the following:

1. Segment the binary input sequence into blocks (symbols) of n bits.

2. Create a table of used symbols and their frequency.

3. Create another table by sorting the symbols in decreasing order of their occurrence level, and
then encode more often used symbols with fewer 1s. Output symbols with the same weight are
sorted in decreasing order of the largest distance between consecutive 1s in the output symbol.

If the order of the output symbols with the same weight is not taken into account, NME coding
is the same as ME coding. For example, the available 4-bit symbols with 2 bits 1 are the following:
0011, 0101, 0110, 1001, 1010, 1100. ME coding orders them in ascending order, like previously written.
Instead, NME orders them in descending order of the distance among the bits 1: 1001, 1010, 0101,
0110, 1100, 0011. Thus, more often used symbols are encoded with more spaces between 1s, which is
more suitable to nanonetworks, as stated before.

Note that the output of NME algorithm has the same number of total bits as the input. The only
difference is the number of 1s, the output of NME algorithm having less number of 1s than the input.

In the following, we will detail the algorithm. In step 1, the binary input sequences are segmented
into blocks of n bits, afterwards the binary sequence is converted into symbols of A = a1, a2, . . . , aN .
A denotes the set of possible output from the random variable X. The probability mass function is
denoted by Pi = P (X = ai) for i = 1, 2, ..., N (where N = 2n). In practice, not all the symbols are used
in transmission process. In this case, the set of used symbols can be defined as Au = a1, a2, . . . , aM ,
where M ≤ N .

In step 2, the table of used symbols and their frequency (number of occurrences) is created, as
shown in table 4.1. This table allows to count the number of 1 bits. The total weight (the number
of 1s) for original data is:

Noriginal =
M∑
i=1

n(i)× w(ai) (4.2)

where n(i) is the number of occurrences of symbol i, and w(ai) is the Hamming weight of symbol i
(the number of 1s in symbol i) [178].

In step 3, a new table (the dictionary) is created from the previous table by sorting the symbols
based on their frequency of occurrence, as shown in table 4.2. More often used symbols appear upper



4.3. NANONETWORK ENERGY EFFICIENCY 101

Input symbols Ai Frequency Output symbols Ao

ai(1) n(1) ao(1)
ai(2) n(2) ao(2)

...
...

...
ai(M) n(M) ao(M)

Table 4.2: Step 3 in NME coding.

in this table, i.e. n(i) ≥ n(j) for i < j. The dictionary is created before the transmission and it does
not change afterwards. The total weight of NME output is:

NNME =
M∑
i=0

n(i).w(ao(i)) (4.3)

NME properties

Definitions An n-bit symbol is a string of n bits. A mapping is a correspondence table between a
symbol and its encoded symbol, so a function f : Sn → Sn, where Sn is the set of all n-bit symbols.
A mapping is injective.

The following is an example of a 2-bit mapping:

00 → 01
01 → 11
10 → 10
11 → 00

It has four symbols of 2 bits each, both in input and output.

Theorem. The number of possible n-bit mappings is 2n!.

Examples. There are 2! = 2 possible 1-bit mappings, 4! = 24 possible 2-bit mappings, and
8! = 40320 possible 3-bit mappings.

Proof. The proof can be found at [203].

Theorem. The set of n-bit mappings is a subset of 2n-bit mappings set ⇒ The best 2n-bit
mapping is equal or better than the best n-bit mapping.

Proof. The proof can be found at [203].

Dictionary length In the general case, the dictionary (coding table) too should be transmitted to
receiver, before the data. So the dictionary length is an important parameter to consider. However,
as the data size increases, the dictionary length becomes less and less important compared to data.

The biggest dictionary for an n-bit mapping contains all the possible n-bit symbols, i.e. 2n symbols.
Each symbol has n bits. Therefore, the dictionary contains n2n bits for input, and n2n bits for output,
which gives 2n2n bits. However, the dictionary can be sorted by the output symbols, so that only the
input be transmitted. So the Maximum Dictionary Length is MDL = n2n.

In practice, not all the 2n symbols are found in the data, but only M , with M ≤ 2n. In this case,
the Used Dictionary Length is UDL = Mn.

Metrics to evaluate NME

Energy efficiency The first metric we use to measure the coding improvement is the energy effi-
ciency ξ. This is the most critical parameter for nanosensor networks, since the battery capacity in
nanosensors is very limited [43]. During a transmission, both sender and receiver consume energy.
On the sender side, the energy to transmit symbol i is Ei = wi.Ep, where Ep is energy of a pulse
in TS-OOK modulation. Current nano-transceivers are able to transmit a pulse with total energy
0.1 aJ [109]. The total energy required for the transmission can be obtained by multiplying the
number of transmitted pulse and the energy per pulse. The energy to transmit a symbol is equal to
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Figure 4.6: Nanonetworks use the BAC channel model.

the weight of the symbol multiplied by energy per pulse. By taking into account the frequency of
occurrences of each symbol, the total energy for uncoded data is:

Eoriginal =
M∑
i=1

Eai(i) × n(i) = Noriginal × Ei (4.4)

where Eai(i) is the energy of input symbol i, n(i) is frequency of occurrences of symbol i, Noriginal is
total number of 1s in the transmitted data, and Ei is energy per pulse.

NME coding aims to reduce the number of 1s in uncoded data. After performing the coding, two
components need to be transmitted: data and dictionary. Then the total energy after NME coding
can be described by:

ENME =
M∑
i=1

Eao(i) × n(i) +
M∑
i=1

Eai(i) (4.5)

where M is number of used symbols, Eao(i) is the energy to transmit output symbol i, ni is its
frequency, while Eai(i) is the energy to transmit symbol i the dictionary.

The energy efficiency is given by the percentage of energy reduction using NME compared to the
uncoded data:

ξ =
Eoriginal − ENME

Eoriginal
× 100% (4.6)

A positive value of ξ means that NME algorithm effectively reduces the power consumption in trans-
mission process. However, if dictionary size is important compared to data size, ξ could be negative
(NME coding requires more power than uncoded transmission).

As it was already written, the receiver too consumes energy. We consider that it consumes the same
power when receiving a bit 0 or 1. Thus the only difference between uncoded and NME transmissions
is the transmission of the dictionary. Given that the dictionary length is normally much smaller than
data size, and that the receiver consumes much less power than the sender (e.g. 10% of the power used
by sender, mainly because there is no power amplifier at receiver), in this paper we only concentrate
on the energy used by the source.

Robustness during transmission Like in any wireless channel, wireless nanonetworks are prone
to errors, with specific causes: molecular absorption, spreading loss, distances greater than e.g. tens of
centimetres and so on. We use the Binary Asymmetric Channel (BAC) channel, shown in figure 4.6,
suitable to model nanonetwork losses [106]. In BAC model, 1 is correctly received with probability
1−p1 and received with error with probability p1. 0 is changed to 1 with probability p2, with p2 � p1,
because it corresponds to background noise. Input bit 0 comes with probability P (0) and bit 1 with
probability P (1), with P (0) + P (1) = 1.

Codeword error rate: Since NME uses a dictionary table and the receiver encodes the symbol
received back to the original symbol, a relevant metric for coding robustness is codeword (symbol)
error rate (CER) of the channel, as opposed to individual bit error rate (BER) presented in figure 4.6.
CER computing is taken from [106]. The probability of bit error Pe can be calculated as follows:

Pe = p2P (0) + p1P (1) (4.7)
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where the variables involved are the probabilities shown in figure 4.6. A codeword in NME consists
of n bits. If a bit in the codeword is wrong, the whole codeword is wrong. The probability of correct
codeword (no bit error in the received codeword) is calculated by:

Pc = (1− Pe)
n (4.8)

where n is the size of codeword. Assuming bit errors are not correlated, the CER is given by:

CER = 1− Pc (4.9)

hence:

CER = 1− (1− p2P (0)− p1P (1))n (4.10)

where n is codeword length and p variables from figure 4.6.

Application to multimedia transmission: Until now we dealt with errors at channel level. Now we
are interested in the upper level (NME) when such an error occurred. Since the decoding process in
NME algorithm converts the output back into the input using the dictionary, the reconstructed symbol
could be further distorted. For example, suppose that table 4.2 contains the following two lines: 1010
→ 0001 and 0101 → 1001. Suppose that sender wants to send message 1010. NME encodes it to 0001
before sending it through the channel. Due to a 1 bit transmission error, the message is received as
1001, and the receiver encodes it back to 0101. Summing up, symbol 1010 is received as 0101, which
means that a 1 bit error during transmission produced a 4 bits error at receiver.

In the following we use a practical example. As already presented in introduction, nanonetworks
have applications in image transmission. The BAC channel create errors, so the received image could
be different than the original one. To measure the quality of reconstructed image we use the classical
Peak Signal to Noise Ratio (PSNR) metric, where the larger the PSNR value, the better the received
image (closer to sent image) [177].

4.3.4 Numerical results

We use MATLAB to obtain results.

Energy efficiency

We first generate random binary sequences of 10,000 bits with various frequencies of bit 1. Using
equation (4.6), the energy efficiency of NME on data alone (when dictionary is known by receiver) is
shown in figure 4.7. The main result of the figure is that for a fixed input sequence size, the greater n,
the greater the improvement, as expected. Also, when the input sequence has only 0 bits, the output
is also all 0, so there is no coding improvement (0%); as the probability of 1 increases, the symbols
with larger weight occur more often, and the coding improvement increases.

To evaluate NME more realistically, we do tests with several representative types of files: com-
pressed and raw image/video, and program file. For instance, video files are bigger than image files;
compressed video/image files have very few redundancy (this is the purpose of compression), so the
number of bits 0 and 1 is about 50% each; a program file has many bytes 0. The particular files used
in each category (news cif, bus qcif etc.) were chosen at random, without any specific reason. In
the following, we detail the results of only one type of file, and give a summary for the other files.
The results consists of the energy used to send the data (the number of 1s in the output of NME),
the dictionary (the number of 1s in dictionary) and their sum. The energy efficiency for NME coding
is measured using equation (4.6).

Compressed image: lena.jpg. Transmitted bits: 272,016 bits = 33.2 kB. The number of 1s for
original is 132,740 bits. The NME performance is shown in table 4.3. The largest improvement is
achieved using NME 24 bit with 36.08% energy efficiency. Note that a negative energy efficiency
appears for 16 bits, because the dictionary size (26.7 kB) is comparable to data size (129 kB).

Uncompressed image: lena.bmp. NME gains in all cases, and the largest improvement is achieved
using NME 24 bit with 34.22% energy efficiency.
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Figure 4.7: Energy efficiency of NME coding for random data with various probabilities of bit 1.

Coding Number of 1s Number of 1s Number of 1s Energy Dictionary Max dictionary
in dictionary (bits) in data (bits) in total (bits) efficiency (%) length (byte) length (byte)

Original – – 132,740 – – –
NME 2 bit 4 132,386 132,390 0.26 1 1
NME 3 bit 12 132,294 132,306 0.33 3 3
NME 4 bit 32 130,010 130,042 2.03 8 8
NME 8 bit 1,024 122,955 123,979 6.60 0.25 k 0.25 k
NME 16 bit 71,808 82,463 154,271 −16.22 26.7 k 128 k
NME 24 bit 42,376 42,469 84,845 36.08 33 k 48 M

Table 4.3: NME performance for lena.jpg file (33.2 kB).

Compressed video: news cif.mp4. The largest improvement is achieved using NME 8 bit with
2.58% energy efficiency. As a side note, NME 24 bit reduces the number of 1s in coding data, but
requires a large dictionary, which generates a negative energy efficiency.

Uncompressed video: bus qcif.yuv. NME gains in all cases, and the largest improvement is
achieved using NME 16 bit with 54.63% energy efficiency.

Program file: AdobeUpdater.dll. NME gains in all cases, and the largest improvement is achieved
using NME 24 bit with 45.12% energy efficiency.

Robustness during transmission

The BAC channel error probabilities are set to p1 = 0.1 and p2 = 0.004 (i.e. p2 is 25 times smaller
than p1).

Codeword error rate: Based on equation (4.10), the codeword error rate for various values of p1, n
and P (1) is shown in figure 4.8 (in each case, p2 = p1/25). For example, when P (1) = 0.3 (i.e. 30% of
input bits are 1, and 70% are 0) and codeword has 8 bits, the values p1 = 0.1 (probability of receiving
0 when sending 1) and p2 = 0.004 (probability of receiving 1 when sending 0) yield 23% erroneous
symbols. As expected, at fixed 1→ 0 error probability (a vertical line in the figure), the larger the n,
the larger the codeword error rate, so the more vulnerable to error during transmission.

Application to multimedia transmission: Figure 4.9 presents the robustness during image trans-
mission with various probabilities of error. It can be seen that the bigger the number of bits in NME
coding, the greater the efficiency, but the less the robustness/reliability. This is because, as explained
in section 4.3.3, the error can increase when using a dictionary like NME does. This can be spotted
easily in figure 4.10, which presents the received image using various values for NME coding when
transmitting the image through the channel.
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Figure 4.10: Received lena.bmp image when transmitted through a BAC channel with p1 = 0.1 and
p2 = 0.004.

4.3.5 Conclusions

Communication between nanodevices using TS-OOK modulation requires energy to transmit 1 bits
and no energy to transmit 0 bits. Since nanosensors transmit much data and have very limited
energy, energy requirements of communication is very important. Based on this idea, in this paper
we propose a method to reduce the number of 1s in data transmitted, by encoding more often used
symbols using fewer 1s. We evaluate it with real files and investigate the code robustness during
transmission. Numerical results show that the proposed algorithm saves energy depending on input
data distribution, in some of our tests more than 50%, and in theory up to 100%. Results also show
that our method is more vulnerable to channel errors, therefore it needs to be combined with error
correction code.

4.4 Final remarks

Nanotechnology and especially nanowireless communications are fields in their infancy. Not only
nanomaterials are at incipient stage, but also and especially the models to understand how they
work and how they exchange information. No useful simulator exist for such communications. No
nanoantenna radiating at 1 THz and below have yet been built. Assuming that such antennas will
be built, my long-term goal is to provide communication protocols for them and make them use in
various fields in research, such as video transmission, security and especially in medicine with the aim
to make them used by physicians.



Conclusions and perspectives

This manuscript presented the research work I have done in the last 11 years on network communica-
tion. It was divided in four fields, one chapter per field: congestion control, video adaptive streaming,
communication in MEMS networks, and communication in nanonetworks. Congestion control chapter
presents several various independent ideas to optimise network use. Video adaptive streaming chapter
presents mainly three independent ideas: a server-based video adaptation method, a method to re-
duce oscillations given by video adaptation, and an analysis of video adaptation methods found in the
literature. MEMS networks chapter shows the incremental work associated to a funded project, which
lead to a functional prototype. Nanonetworks chapter presents some ideas exploiting particularities
of nanonetworks.

The aim of almost all the work presented here is optimisation of data transmission. I used various
methods to validate the optimisation work. Simulations are the most often used validation method in
computer network research, because they allow setup easiness, control, reproducibility and so on. I
generally used simulations, but also experiments and numerical results given by numerical computing
environments such as Matlab or self-written. Some of the modifications given to simulators have been
made available to researchers on my Web page; for example, modifications made to DCCP patch in
NS2 simulator, which eventually were integrated into the simulator itself (see section 1.5.6).

Based on broadness of the topic, research papers can be roughly divided in two types: short scope
papers presenting a new idea, and broad scope analysis of a field (survey or “philosophic” papers).
Most of my work can be counted in the first category, exceptions being [59] and perhaps [54]. Another
classification is based on the method used; they can be purely theoretical or based on validation results,
or both. Even if some of my work uses formalisation and has a theoretical approach, such as [163],
most of my work is technology-driven and validated using tools such as simulators and experimental
software.

We live in the age of communication. Network communication is a field a few dozens years old, but
is expanding at high speed, sometimes in uncontrollable and unpredictable directions, as shown for
example by social networks Web sites. This is fuelled by the day to day activities of millions of people
who use videoconferencing, video on demand, to give some examples as of today, and applied research
is naturally following this trend. The number of applications and fields using network communication
is also increasing and does not seem to stop in the near future, at least; Internet of things include
many such initiatives. Digital and network communications have a bright future.
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