Long parallel algorithm design vws. quick parallel implementation

Stéphane Vialle, Eugen Dedu
Supélec, 2 rue Edouard Belin, 57070 Metz, France
{vialle, dedu}@ese-metz.fr

1 DMotivations

Some applications have a parallel natural algorithm
well adapted to modern MIMD parallel computers,
while others seem at first look to be sequential and
need a parallel algorithm design. In this last case,
we have to choose between doing just a parallel im-
plementation of a poor parallel algorithm, or doing
a parallel algorithmic effort before the parallel im-
plementation.

As today it is possible to quickly parallelize se-
quential source code using OpenMP, the temptation
is great to avoid to design new parallel algorithms.
This paper relates some new and previous experi-
ences [2], and points out the difference between par-
allel algorithmic and parallel implementation, and
some contributions of OpenMP.

2 Straightforward parallel imple-
mentation of image processing

We are currently working on robotics projects, and
we need to detect special marks in the environment
to check the position of the robots. We use marks
based on P-similar function curves [8], that can
be detected with few computations, and are very
scarce in natural environment. Even if the sequen-
tial execution time is short (less than 1s) we need
to reduce it to the maximum, as it is just a part of
a complex robot management program that has to
run in real time. So, we need to run this program
on a parallel computer.

But we cannot use a big parallel machine to man-
age all the robots, shared with many other users:
execution time would depend on the load of the
machine, and would not be always in real time. We
need a dedicated parallel computer for each robot.
Moreover, we cannot buy a big parallel computer for
each robot, this would be too expensive. We have
to use small parallel computers, and to implement
high efficient parallel programs in order to obtain

160
140 |
120
100
80
60 | :
40 oo s e -
20 f- s e -

' OpenMP <—
""" Multithreading —--"

Execution time (ms)

1 2 3 4
Number of processors

Figure 1: Execution times of two straightforward
parallel implementations of P-similarity detection
(image processing): OpenMP implementation and
classic multithreaded one, on SGI-Origin2000 par-
allel computer

very small execution times on few processors. Fi-
nally, today we use a cheap 4 processor SGI-VWS-
540 parallel computer, with Pentium ITI-Xeon pro-
cessors and Windows-NT OS.

P-similarity detection is well adapted to these
MIMD parallel machines: image lines can be pro-
cessed concurrently without communications, and
we can group several lines per task in order to ob-
tain coarse grained parallelism. Natural parallelism
of the algorithm can be easily and efficiently ex-
ploited, no algorithmic effort is needed. We have
made two parallel implementations, using OpenMP
(Kai compiler) and classical multithreading technics
based on native Windows threads.

We obtained very good and close results for both
implementations as shown in figure 1. Efficiency
was close to 75% on four processors (limited by a
residual serial fraction), and OpenMP implementa-

Implementation | Total line number | Overhead
Sequential 3443 lines -
OpenMP 3447 lines 4 lines
Multithreaded 3631 lines | 188 lines

Table 1: Number of lines of P-similarity detection
implementations, with OpenMP and classical mul-
tithreading

tion was easier (development time and source code
were reduced, see table 1). This is an example of a
regular computation application, with natural par-
allelism well adapted to MIMD parallel computers.
No parallel algorithmic effort is needed, just a paral-
lel implementation effort, and OpenMP can be used
successfully to obtain high efficiency and minimize
development time.

3 Simple parallelisation of Kohonen
neural network

Kohonen neural network ([3]) is another example
of regular algorithm containing natural parallelism.
It is a fine-grained algorithm, but it can be easily
parallelized on modern parallel machines by group-
ing several computations in one task. Some care is
needed to avoid cache coherence contention and, if
the data size is sufficiently large, to find a good load
balancing among the processors.

A cycle of simulation is divided in three parts.
The first part is the computation part, where each
neuron computes its distance to the input data in-
dependently of the other neurons. Several neuron
computations can be grouped in one task. The sec-
ond part is the detection of the winning neuron,
where the neuron which has the minimum distance
(the winner) is found. This is a sequential bottle-
neck inherent to the Kohonen algorithm. Note that
the REDUCTION clause of OpenMP cannot be used
in this case, because we do not need to know the
minimum distance, but the neuron whose this min-
imum is associated. Finally, the third is the update
part, where the neurons in the neighbourhood of
the winner update their weights. Again, the neu-
rons can be grouped in one task to increase the
grain of parallelism. But because only some neu-
rons are concerned, a partitioning which balance
the load among the processors might be necessary
(figure 2). Others types of partitioning are shown
in [7].

We have implemented this algorithm in Fortran-

1]2 4 1]2 4
1|2 4

4 2

1|2 4 2
2 4
1]2 4

2 4 2 4
1]2

3 2

112|334 2134

Figure 2: Data partitioning principle of a 10 x 10
Kohonen map parallelization trying to maximize
the load balancing: the neurons are cyclically dis-
tributed among the threads (6 on this example)

50 T T T T
C-multithreaded —+—
45 + Fortran-OpenMP ———x--— |
__40%
G
° \
£ 35 |
§ 30
5
g 25
X
nj 20 N\
X e
5 \ —
T —~_;;;> 7777777 (oo -
10
1 2 3 4 5 6 7 8 9
Number of processors
Figure 3: Execution times of the Kohonen

map implementations in Fortran-OpenMP and C-
multithreaded on SGI-Origin2000 parallel machine

OpenMP and C-multithreaded, both on an SGI-
Origin2000 [2]. The input data is a 16 x 16 ma-
trix, and the neuron map is 10 x 10. We obtained
relatively similar execution performances: speed up
close to 3 on 5 processors, and growing up to 3.2 on
7 processors for the Fortran-OpenMP version (fig-
ure 3). But the OpenMP version was written much
faster than the C-multithreaded one, and, as shown
in figure 3, is more scalable than the multithreaded
one.

The Kohonen algorithm does not need an algo-
rithmic work, but a minimum effort in parallel im-
plementation. The results show that this algorithm
is better suited to parallelisation with OpenMP,
both in development time and in execution perfor-
mance.

super-step #1

O O
&—0 e&-—0
®@ &0 O,

. Processor

super—step #2
super—step #3

’ super—step #4

<_' Data exchange

Figure 4: Odd-even bubble sort applied to a list of
four elements

4 New algorithmic design of parallel
bubble sort

4.1 Natural parallel implementation

Bubble sort is an example of totally sequential algo-
rithm. The data input of any comparison depends
on the results of the previous comparisons. But the
odd-even bubble sort [4] interchanges the order of
comparisons and may be parallelized.

This algorithm sorts a data list of length N, while
running N super-steps, and each super-step running
N/2 elementary steps. Figure 4 illustrates this prin-
ciple on a list of an even number of elements (4 in
this example). The algorithm begins with an odd
super-step (number 1), and each element of the ini-
tial list is associated to one of its neighbors, in order
to form N/2 couples. Each couple of elements are
compared and exchanged if necessary. This con-
stitutes the N/2 compare-exchange operations, or
N/2 elementary steps, of the first super-step. At
the next super-step (number 2), each element of the
list is associated with its other neighbor, in order
to form N/2 — 1 couples (one couple in the exam-
ple of figure 4). As previously, each couple of data
is sorted, and super-step number 2 is composed of
N/2 — 1 elementary steps. Following super-steps
are alternatively identical to the first or the second
super-step, and the data list is sorted at the end of
the super-step number N.

We have made an OpenMP parallel implementa-
tion of this algorithm, adding only 3 lines to the se-
quential code: one #include <omp.h> line and two
#pragma omp parallel for lines. Figure 5 shows
the main routine of the source code.

First, we have run this program on a small set of
data on a small parallel computer (a 4-processors
SGI-VWS-540), and we have obtained an efficiency
close to 92%. Second, we have run the same pro-

for (step = NbDataT; step > 0; step--) {

if (step % 2 ==0) { /* Even steps */
#pragma omp parallel for private(i,buff)
for (i = 0; i < NbDataT-1; i += 2)

if (TabData[i] > TabDatal[i+1]) {
buff = TabDatal[il;
TabData[i] = TabDatal[i+1];
TabData[i+1] = buff;}

} else { /* 0dd steps */
#pragma omp parallel for private(i,buff)
for (i = 1; i < NbDataT-1; i += 2)

if (TabDatal[i] > TabDatal[i+1]) {
buff = TabDatal[i];
TabData[i] = TabDatal[i+1];
TabData[i+1] = buff;}
¥
}

Figure 5: Main routine of the straightforward
OpenMP implementation of the odd-even bubble
sort: only two OpenMP directives have been added

gram on a larger data set (2 millions of floating
point numbers) on a larger parallel computer (an
SGI-Origin2000, with 64 processors). Figure 6 il-
lustrates the significant execution time decrease of
this benchmark.

Performances seem great, but execution times re-
main high. We had to give up sorting the larger set
of data on less than 8 processors: execution times
were too large. This is the medium result we obtain
with a quick parallel implementation of the bubble
sort algorithm (using OpenMP), and a small paral-
lel algorithmic effort (odd-even bubble sort in place
of classic bubble sort). In the next paragraph we
introduce another parallel bubble sort algorithm,
which needs greater algorithmic effort than parallel
implementation effort, but supplying better perfor-
mances.

4.2 New parallel algorithm design

A better algorithm based on the parallel bubble sort
principle consists of exchange and compare only P
macro-elements on P processors, in P super-steps.
Each macro-element is an ordered list of N/P el-
ements, loaded and sorted sequentially on a pro-
cessor [4]. For this sequential and initial step an
optimized sequential sort has to be used, such as
quick-sort.

At each step, each processor exchanges its local
ordered list with one of its neighbor, and extracts
the N/P less or greater data of the two ordered
lists of length N/P, as illustrated on figure 7. This

10000
D
S 8000
E
= 6000
S
S 4000
o)
@ 2000
0 | | |
1816 32 64

Number of processors

Figure 6: Decreasing execution time of the odd-
even bubble sort implemented with OpenMP on an
SGI-Origin2000, and applied to sort 2 millions of
floating point numbers

Implementation | Total line number | Overhead
OpenMP 1399 lines -
Multithreaded 1802 lines | +403 lines

Table 2: Number of lines of the optimized parallel
bubble sort implementations

is an easy and fast operation, since a simple com-
parison of the two ordered list heads supplies the
less element. Then it is extracted from its list, and
the two new list heads are compared again, and
supply the second less element. The process stops
when N/P elements have been extracted. Identical
mechanism on queue lists allows to extract easily
the N/P greater elements on the neighbor proces-
sor.

We have implemented this algorithm on a shared
memory machine, an SGI-Origin2000, using MPI
and multithreading paradigm, and more recently
using OpenMP. MPI implementation was not very
efficient as message passing was longer than mem-
ory sharing, but multithreaded and OpenMP imple-
mentation performances were high and close. Fig-
ure 8 shows the short and close execution times of
both versions, sorting a list of 8 million floating
point numbers.

As previously shown, OpenMP implementation
is shorter (see table 2) and performances are iden-
tical, so OpenMP seems to be the best way to im-
plement this new parallel algorithm. We have not
used the #pragma omp parallel for directive, as

&G—©

Ordered 1371020 v

. 46121416

lists

List 1371020i 1{46121416

exchanges | 461214 1 1371020
1371020 46121416

New list 46121416| [1371020

extractions | 13467 01214162q y t

Figure 7: Details of one comparison-exchange oper-
ation of the optimized parallel bubble sort

we did for basic bubble sort parallelization issued
from sequential implementation. We have used one
#pragma omp parallel directive to run threads in
parallel, and some #pragma omp barrier to syn-
chronize the list exchanges and list manipulations
instead. This is a parallel programming style close
to the classic multithreading one; differences are
mainly syntactic. But simplicity of OpenMP syn-
tax is highly appreciable to minimize development
times.

Comparing figures 6 and 8, we notice that the
new parallel algorithm is significantly faster than
the basic odd-even bubble sort version: execution
times are 1000 times less on a 4 times greater prob-
lem! This is the positive result of the great paral-
lel algorithmic effort that we made to change the
basic odd-even bubble sort algorithm, to introduce
local quick-sort on local data, and to exchange and
compare some ordered lists in place of elementary
elements. The performance increased a lot, but the
parallel algorithmic effort became higher than the
parallel implementation one and the development
time increased significantly.

This example shows that modern and powerful
parallel implementation tools, such as OpenMP, al-
low to quickly parallelize some sequential source
codes, but do not dispense with designing new
and faster parallel algorithms. Opposite the P-
similarity detection described in section 2, some ap-
plications have not efficient and natural parallel al-
gorithms.

¥
- 124-— OpenMP -o— -
> 10 b Multithreading —+-- |
= o
=
i)
5
o)
n|
olL—L 1 1
1 8 16 32 64
Number of processors
Figure 8: Identical execution times on an SGI-

Origin2000, of the new algorithm of parallel bub-
ble sort, applied to a list of 8 millions of floating
point numbers, and implemented both with classic
multithreaded and OpenMP

5 Attempt of natural parallelization
of quick sort

Some very efficient parallel sort algorithms exist,
more efficient than the optimized parallel bubble
sort of the previous section. One of the best known
is the hyperquicksort [4]. It is based on the classi-
cal quick-sort principles (pivot values usage, and
list split) and is run on a hypercube network of
processors, doing local quick sort on each proces-
sor, and minimizing processor communications. We
have implemented it both with message passing and
memory sharing paradigm, and we have obtained
very good performance until 64 processors on an
SGI-Origin2000. No doubt we could implement it
using OpenMP, as we have done for the optimized
parallel bubble sort. But it remains a complex and
not obvious parallel sort, and we wanted to com-
pare its performances to the ones of a straight-
forward parallelization of the sequential and well
known quick-sort algorithm, as we did in section 4
with different versions of parallel bubble sort.
Quick sort is an efficient sorting algorithm con-
taining natural parallelism: it is based on recursive
data list decomposition that can be processed con-
currently. Then we can create a new task each time
a recursive call is done. Load balancing among the
P processors will be statistically assured, as each
processor will run a lot of tasks. However, in order
not to create too many tasks nor too small tasks,
we limit the task creation to a fixed depth of the

Input datalist to sort

creations

List
splits.

Statistic
load
balancing
p

processor

Figure 9: Natural quick-sort parallelization: recur-
sive calls are associated to thread creations until a
fixed deep, and tasks are statistically load balanced
among the processors

recursive call, as shown in figure 9. We have al-
ready successfully used this way of parallelization,
based on large number of task creations instead of
recursive calls and statistical load balancing, on an
N-queen problem [5]. So, we wanted to use this
strategy to quickly parallelize a sequential quick-
sort source code, using OpenMP and its nested par-
allelism capabilities, allowing any thread to create
new threads.

But the two OpenMP compilers we used (Kai and
SGI compilers) do not support yet nested paral-
lel sections, so we limit the splitting deep of the
recursive call tree to 1, creating only 2 threads.
We obtained an efficiency ranging from 92% to
67% when sorting random lists on 2 processors on
an SGI-Origin200 or an SGI-VWS-540, depending
on the input data list. There were not enough
threads to insure a statistical load balancing. But
the OpenMP implementation of this strategy was
easy, and it would be very interesting to compare
its performances to more complex implementations
as hyperquicksort ones, when nested parallelism will
be available in OpenMP compilers. We claim that
nested parallelism could be very useful to quickly
parallelize some algorithms based on recursive calls.

6 Complex parallel algorithm of
Multi Agent System.
We have developed a situated multi-agent system

that simulates a set of robots evolving on a build-
ing floor. We use stochastic mechanisms to model

Application Parallel Is OpenMP

algorithmic as efficient as
effort ? multithreading ?

P-similarity None Yes

detection

Kohonen Small Yes

neural net

Optimized Great Yes

bubble sort

Recursively None Need nested

parallelized parallelism

quick sort

Table 3: Main results of our experimentations: ex-
ecution efficiency and parallel algorithmic effort.

uncertainties of observations and actions, and we
model simultaneity of actions such as moving con-
flicts [1]. This application has a natural parallelism:
the agents act in parallel. But one agent does not
make enough computations to be an entire process
or thread, and simultaneity model leads to group-
ing in a same task all the agents engaged in a same
conflict (one conflict has to be solved sequentially).
So, number and size of tasks change when agents
move, and we have to use a dynamic load balanc-
ing mechanism to efficiently parallelize our multi
agent system, and to process several tasks in a same
thread.

We have implemented this situated multi-agent
system on a distributed shared memory com-
puter (an SGI-Origin2000), using a multithread-
ing paradigm and a double work-pool mechanism
to do dynamic load balancing [6]. This is an ex-
ample of a very complex parallel algorithm, re-
ally different from natural and agent-based paral-
lelism: the implementation uses threads (that do
not match agents), shared counters and semaphore-
based synchronization. It seems possible to use
OpenMP to implement this application, for exam-
ple by putting conflicts in a shared table, and by
using parallel loop (#pragma omp parallel for)
with the dynamic scheduling option, but we have
not yet experimented this solution. However it will
not allow a straightforward parallel implementation
of this application. This will remain a not obvious
parallelization, and parallel algorithmic effort will
be greater than parallel implementation effort.

7 Conclusion

OpenMP allows to decrease development time of
many parallelizations, especially for regular compu-
tation algorithms|[2], without loss of performances,
compared to classic multithreading paradigm (see
table 3). But if the natural algorithm of the ap-
plication does not contain parallelism adapted to
MIMD modern computers, then we have to design
a new and efficient parallel algorithm rather than
look for an efficient implementation of the natural
one.

Parallel algorithm design and parallel implemen-
tation are two different steps of parallel program-
ming, and OpenMP simplifies parallel implementa-
tion but does not dispense with parallel algorithmic
effort when necessary.

Acknowledgments

Authors thank Vincent Rieger and Cédric Rose
for their implementations and benchmarks of P-
similarity detection, and the Charles Hermite Cen-
ter (France) for accesses to its SGI-Origin2000.

References

[1] M. Bouzid, V. Chevrier, S. Vialle, and
F. Charpillet. A stochastic model of interaction
for situated agents and its parallel implementa-
tion. In ACIDCA, Monastir, Tunisia, 2000.

[2] E. Dedu, S. Vialle, and C. Timsit. Comparison
of OpenMP and classical multithreading paral-
lelization for regular and irregular algorithms.
In SNPD, Reims, France, May 2000.

[3] T. Kohonen. Self-Organizing Maps. Springer,
1997.

[4] V. Kumar, A. Grama, A. Gupta, and
G. Karypis. Introduction to parallel comput-
ing. The Benjamin/Cummings Publishing Com-
pany, 1994.

[5] Y. Lallement, T. Cornu, and S. Vialle. Applica-
tion developpement under ParCEL-1. In PPAI-
95, Montreal, Canada, 1995.

[6] B.P. Lester. The art of parallel programming.
Prentice Hall, 1993.

[7] Ioannis Pitas, editor. Parallel Algorithms for
Digital Image Processing, Computer Vision and
Neural Networks. John Wiley & Sons, 1993.

[8] D. Scharstein and A. Briggs. Fast recognition
of self-similar landmarks. In IEEE Workshop
on Perception for Mobile Agents, June 1999.

