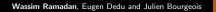
Avoiding zigzag quality switching in real content adaptive video streaming

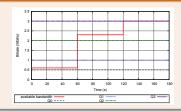
Wassim Ramadan, Eugen Dedu and Julien Bourgeois

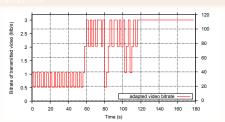
Laboratoire d'Informatique de l'Université de Franche-Comté Montbéliard, France


> DICTAP 21–23 June 2011

Goals of zigzag avoiding

- Improve user video experience by minimizing unnecessary quality switching
- Optimise network resource usage by minimizing packet loss rate




 $=(a^2-b^3)$

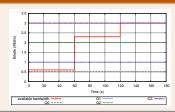
 $=(a^2-5)^2$

Video adaptation and zigzag quality switching

Dynamic bandwidth vs static bitrates

Ideal bitrate

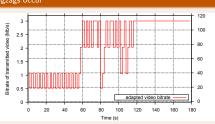
- If bitrate < bw: non-optimised
- If bitrate>bw: lost packets
- Ideal: bitrate=bw


Zigzag problem

Adaptation leads to:

- many zigzags
- poor quality

Video adaptation and zigzag quality switching


Dynamic bandwidth vs static bitrates

Ideal bitrate

- If bitrate < bw: non-optimised
- If bitrate>bw: lost packets
- Ideal: bitrate=bw

many zigzags occur

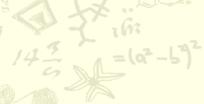
Zigzag problem

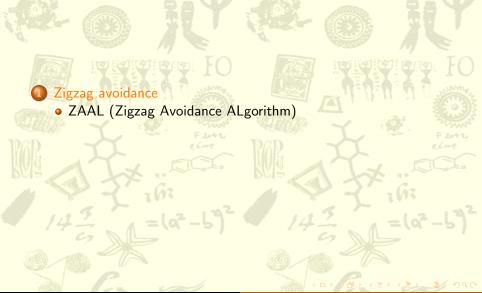
Adaptation leads to:

- many zigzags
- poor quality

Outline

Introduction


000



Outline

Overview of ZAAL

ZAAL Zigzag Avoidance ALgorithm

ZAAL maintains a successfulness value for each bitrate which:

- is an arithmetic real value between 0 and 1
- indicates the successfulness of the bitrate if used
- uses a historic of the application last attempts to use the bitrate
- is calculated at the end of an adaptation period
- is obtained by applying an EWMA^a algorithm on the bitrate successfulness historic

^aEWMA: Exponential Weighted Moving Average

Details of ZAAL

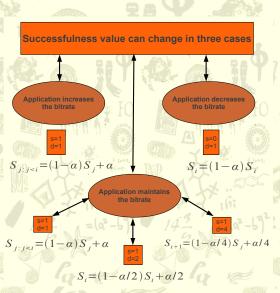
ZAAL works as follows

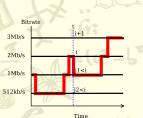
 at the beginning of a video transmission, all successfulness values S_i^a are set to 1

Experiments

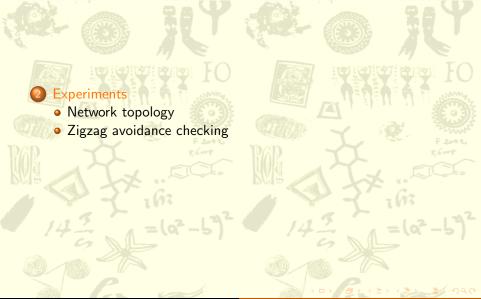
- the application switches to a higher quality i+1 only if $S_i > \beta^b$
- ZAAL uses the following general formula: $S_i = (1 - \alpha/d)S_i + s(\alpha/d)^{c de}$

ai: bitrate index


 $^{^{}b}\beta = 0.7$ switching threshold


^cif the bitrate succeeds s = 1 else s = 0

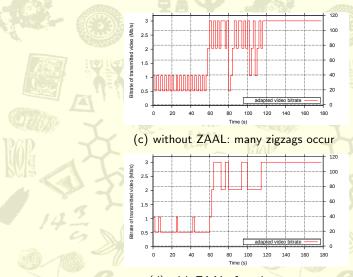
 $^{^{}d}\alpha = 0.3$ degree of EWMA weighting increase/decrease


^eand d = 1, 2 or 4 division factor

Formula of ZAAL

Outline

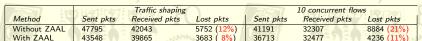
Experiments


Network used in experiments

Network parameters

Parameter name	Parameter value
Experiments place	In building
Packet size	1024 bytes
PC1 (sender): Wired card, 100Mb/s	
PC2 (shaper machine): Wireless card, 802.11b/g 54Mb/s	
PC2 (shaper machine): Wired card, 100Mb/s	
PC3 (receiver): Wired card, 100Mb/s	
PC1,2&3 OS	Linux (Ubuntu 64bits)
PC1,2&3 OS kernel	2.6.35 generic
DCCP	Included in the kernel
Distance (AP \leftrightarrow PC2)	50cm

Zigzag avoidance, ex. of one flow in (case of) traffic shaping


(d) with ZAAL: few zigzag occur

 $=(q^2-b^3)^2$

Performance comparison

Introduction

Two experiments: one flow and ten concurrent flows

Number of sent and received packets (average of all flows) with and without ZAAL

- in the first experiment, ZAAL has less sent and received packets than without ZAAL, but using ZAAL is more useful because it avoids the zigzag and leads to 30% fewer packet losses
- in the second experiment, ZAAL is better in terms of sent and received packets, avoiding the zigzag in the same time

Conclusions

Introduction

- ZAAL is a general solution, since it can be integrated to any adaptation method
- ZAAL avoids the undesirable constant switching in quality (the zigzag problem)

Perspectives

 working on a hybrid solution, which uses a bandwidth estimation method together with ZAAL

= (02-52

Conclusions

Introduction

- ZAAL is a general solution, since it can be integrated to any adaptation method
- ZAAL avoids the undesirable constant switching in quality (the zigzag problem)

Perspectives

 working on a hybrid solution, which uses a bandwidth estimation method together with ZAAL

