Optimal Path Evolution in a Dynamic Distributed MEMS-Based Conveyor

Haithem Skima, **Eugen Dedu**, Julien Bourgeois, Christophe Varnier, Kamal Medjaher

UBFC / UFC / ENSMM, Institut FEMTO-ST France

DepCoS-RELCOMEX Brunów, Poland June–July 2016

Optimal Path Evolution in a Dynamic Distributed MEMS-Based Conveyor

The conveyor

- A matrix of identical blocks
- Each block contains:
 - a sensor to detect if an object is above it
 - a controller
 - a power supplier
 - an actuator: MEMS valve (micro-electro-mechanical system)
 - a network module to communicate with
 its four immediate neighbours (up, down, left, right)
- The valve generates air, which allows to move the object above it
- The goal of the surface is to convey objects from one point to another

Context: intelligent transportation systems

Common property: several possible paths for transportation

Network communication

- Degradation upon usage (energy consumption)
- Goal: speed and dependability

Car traffic

Energy network

- Cables limited to e.g. 100 MW
- Depend on time (peak hours)
- Goal: decrease travel time

Conveyor

Eugen Dedu

- Distributed and modular system •
- Degradation upon usage (blocks degrade)
- All objects have the same destination
- One object at a time •
- Goal: increase system's dependability (i.e. availability, reliability etc.) by carefully choose the transportation path
- **Conclusion:** each system has its specific features, leading to different properties; let's analyse conveyor dependability

Optimal Path Evolution in a Dynamic **Distributed MEMS-Based Conveyor**

Dependability issue

- One issue of the conveyor: blocks **degrade** (deteriorate) during usage, hence they can **fail**
- History of maintenance strategies:
 - unplanned breakdown strategy *after* occurrence of failure
 - preventive maintenance after some fixed time, regardless system's health
 - condition-based maintenance (CBM) uses *current* system's health
 - recently, predictive maintenance (PM) predict failure, system's remaining useful life (RUL), prognostics and health management (PHM) research field <== this is what we target

Degradation model used

- The degradation of a system is given by the degradation of its blocks, which in turn is given by the degradation of block components; we consider only MEMS valves
- During object conveyance, MEMS valves degrade
 - each time a MEMS is used to convey an object, its number of cycles C increments by 1
- Here we use a linear degradation:
 - $RUL = initial_RUL C$
- Our later experiments yielded an exponential degradation:
 - health indicator = a.exp(b.C) + c.exp(d.C)
 with a,b,c,d constants
- Definitions:
 - path RUL = min (RUL) of all its blocks
 - optimal path = the path whose path RUL is max

	S 95 – 1.5 (0,0)	98 – 1.2 (0,1)	57 - 5.3 (0,2)	23 – 8.7 (0,3)	64 - 4.6 (0,4) 58 - 5.2 (1,4)		
	14 – 9.6 (1,0)	44 – 6.6 (1,1)	16 – 9.4 (1,2)	88 – 2.2 (1,3)			
	79 – 3.1	83 – 2.7	27 – 8.3	83 – 2.7	22 – 8.8		
	(2,0)	(2,1)	(2,2)	(2,3)	(2,4)		
(44 – 6.6	98 – 1.2	72 – 3.8	96 – 1.4	99 – 1.1		
	(3,0)	(3,1)	(3,2)	(3,3)	(3,4) D		

Simulator features

- Written in Java language, multi-threaded (each block is a thread)
- Allows to choose: surface dimension, number of objects to introduce, sources position
 - initial RULs are random
- During simulation, each time an object is conveyed: computation of the optimal path by each block (Dijkstra's algorithm), degradation of blocks, communication among blocks, statistics presentation (paths, surface state etc.)

Initial surface for simulations

95 – 1.5	98 – 1.2	57 – 5.3	23 – 8.7	64 – 4.6		
(0,0)	(0,1)	(0,2)	(0,3)	(0,4)		
14 – 9.6	44 – 6.6	16 – 9.4	88 – 2.2	58 - 5.2		
(1,0)	(1,1)	(1,2)	(1,3)	(1,4)		
79 – 3.1	83 – 2.7	27 – 8.3	83 – 2.7	22 – 8.8		
(2,0)	(2,1)	(2,2)	(2,3)	(2,4)		
44 – 6.6	98 – 1.2	72 – 3.8	96 – 1.4	99 – 1.1		
(3,0)	(3,1)	(3,2)	(3,3)	(3,4)		

Optimal path evolution – one source

98 - 1.2	57 - 5.3	23 - 8.7	64 - 4.6	60 - 5.0	63 - 4.7	50 - 6.0	16 – <mark>9.4</mark>	64 - 4.6	60 - 5.0	63 – 4.7	50 – 6 .0	16 – 9.4	64 - 4.6
				7 ←					2 🛻				
44 – 6.6	16 – 9.4	88 - 2.2	58 - 5.2	14 – 9.6	I 16 – 9.4	16 - 9.4	81 – 2.9	58 - 5.2	14 – 9.6	I 16 – 9.4	16 – 9.4	81 – 2.9	58 - 5.2
33 – 2.7	27 - 8.3	83 – 2.7	22 - 8.8	79 – 3.1	55 - 5.5	27 – 8.3	76 – 3.4	22 - 8.8	79 – 3.1	55 - 5.5	27 - 8.3	76 - 3.4	22 - 8.8
98 – 1.2	72 – 3.8	96 – 1.4	99 – 1.1	44 - 6.6	1 70 − 4.0	44 - 6.6	61 – 4.9	64 - 4.6	44 - 6.6	1 1 70 - 4.0	44 - 6.6	61 – 4.9	64 - 4.6
1	4 - 6.6 13 - 2.7	4 - 6.6 16 - 9.4 13 - 2.7 27 - 8.3	4 - 6.6 16 - 9.4 88 - 2.2 33 - 2.7 27 - 8.3 83 - 2.7	14 - 6.6 16 - 9.4 88 - 2.2 58 - 5.2 13 - 2.7 27 - 8.3 83 - 2.7 22 - 8.8	4-6.6 $16-9.4$ $88-2.2$ $58-5.2$ $14-9.6$ $13-2.7$ $27-8.3$ $83-2.7$ $22-8.8$ $79-3.1$	$4-6.6$ $16-9.4$ $88-2.2$ $58-5.2$ $14-9.6$ $16-9.4$ $13-2.7$ $27-8.3$ $83-2.7$ $22-8.8$ $7 \leftarrow$ $16-9.4$ $13-2.7$ $27-8.3$ $83-2.7$ $22-8.8$	4-6.6 $16-9.4$ $88-2.2$ $58-5.2$ $14-9.6$ $16-9.4$ $16-9.4$ $13-2.7$ $27-8.3$ $83-2.7$ $22-8.8$	4-6.6 $16-9.4$ $88-2.2$ $58-5.2$ $14-9.6$ $16-9.4$ $16-9.4$ $81-2.9$ $13-2.7$ $27-8.3$ $83-2.7$ $22-8.8$	4-6.6 $16-9.4$ $88-2.2$ $58-5.2$ $14-9.6$ $16-9.4$ $16-9.4$ $81-2.9$ $58-5.2$ $13-2.7$ $27-8.3$ $83-2.7$ $22-8.8$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Path evolution:

- Number of optimal paths:
 - a 1st optimal path, afterwards a new optimal path appears and 2 optimal paths are used, and so on
- Oscillation among optimal paths
- Duration of usage of each optimal path during one oscillation:
 - the more optimal paths, the less they oscillate
- Duration of usage of each optimal path during the whole simulation:
 - the 1st optimal path is the most used, afterwards the 2nd optimal path etc.

Two and more sources

Conclusions:

- For two sources, paths oscillate more or less randomly
- For four and more sources, optimal paths change randomly (no oscillation noticed)

Eugen Dedu

Optimal Path Evolution in a Dynamic Distributed MEMS-Based Conveyor

Additional results found in the article

- In addition to the RUL, each block has a transfer time too, which is used in case of two equal optimal paths (i.e. with the same RUL)
- It is better to use RUL, not transfer time, as main criterion for paths
- Position of the sources influences surface lifetime

Conclusions and perspectives

- The number of optimal paths increases with time
- Optimal paths oscillate
- The more optimal paths, the less they oscillate

- The 1st optimal path gets used the most often, afterwards the 2nd optimal path and so on
- For several sources, there is no pattern anymore
- Perspectives:
 - allow several objects concurrently on the surface
 - use a more realistic movement model, by taking into account path curves in object speed, object inertia, more realistic degradation model etc.
- Simulator code used to get results is available at http://eugen.dedu.free.fr