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Introduction

Microtechnology is now a mature technology 
MEMS can be produced by thousands units
Applications:

STMicro LIS331DLH

Accelerometers

What for?
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Introduction

Microtechnology is now a mature technology 
MEMS can be produced by thousands units
Applications:

TI 

Digital Micromirror Device

What for?
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video
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Scientific objectives

Four mains scientific challenges ...
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Scientific objectives

Scalable and fault-tolerant distributed programming
 Challenge: Propose a programming model which can scale up to 

millions of MEMS units
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Programming model

Expected properties:
 Scalable
 Fault-tolerant
 Allowing real-time features
 Embedded in resource constraint environment

Meld as a basis
 Adding real-time features
 Unit synchronization
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Scientific objectives

Scalable and fault-tolerant distributed programming
 Challenge: Propose a programming model which can scale up to 

millions of MEMS units
Integration of fully distributed computing and control

 Challenge: Co-design between distributed computing and control to 
manage sensors/actuators.
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Distributed actuation: principles

In K. Boutoustous, G. J. Laurent, E. Dedu, L. Matignon, J. Bourgeois, and N. Le Fort-Piat. Distributed control 
architecture for smart surfaces. In IEEE/RSJ IROS, pages 2018–2024, Taipei, Taiwan, October 2010. IEEE.



11

Distributed actuation: performance

Very dependent on the programming model
Can estimate local processing times (WCET : Worst Case 
Execution Time)







++




 ∑∑ ∑∑
== ==

)(

1

),(),(

)(

1 1

)(

1

)().(..
PNbC

n

mnsmn

PNbB

n

n

i

ibimi

pNb

b

bg TTSNISTCNEC c

seq



12

Scientific objectives

Scalable and fault-tolerant distributed programming
 Challenge: Propose a programming model which can scale up to 

millions of MEMS units
Integration of fully distributed computing and control

 Challenge: Co-design between distributed computing and control to 
manage sensors/actuators.

Fault detection
 What are the possible faults, how to detect them, what do we require 

to do so
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Failure localization

MEMS actuators are prone to 
failure
Detecting failures by 
analyzing misbehaviors
Localizing faulty actuators
Need for a distributed 
consensus algorithm
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Leads to the « fault detector » concept : a 
high level service able to detect incorrect 
situations

Steps :
Define the level of details and the 
« trustworthyness » of thoses detectors in 
our context.
Define the formal synchronism 
requirements of thoses detectors
Implement the detectors in a distributed 
way

Failure localization
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Scientific objectives

Scalable and fault-tolerant distributed programming
 Challenge: Propose a programming model which can scale up to 

millions of MEMS units
Integration of fully distributed computing and control

 Challenge: Co-design between distributed computing and control to 
manage sensors/actuators.

Fault detection
 Challenge: Propose a k-set agreement in an asynchronous message 

passing environment
Scalable and efficient simulation 

 Challenge: Scale up in numbers while keeping sufficient precision 
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Scientific objectives

Discrete events simulator with techniques originating from 
network simulation field
Deterministic / ensure the reproducibility of the results
Visualization to help understanding / debuging
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Scientific objectives

Scale well
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Scientific objectives

Four mains scientific challenges ...
… Integrated into a unique project covering theoretical aspects 
up to real-world implementation
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Demonstrator: Blinky Blocks
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Demonstrator

Creating a conveying surface based on MEMS 
actuators
Blinky Blocks will serve a a basis for 
computing/communication
Two types of MEMS surface will be used

Conveying Surface
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Demonstrator: Pneumatic surface

Yahiaoui, Manceau… 
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Demonstrator: Ciliary surface

Ciliary surface (actuators/sensors/processing)

Y. Mita,… 
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Conclusion

Our project addresses both practical and theoretical 
problems
Real experiments and  simulations will be used to 
assess its performance

… also, this works is currently mainly funded by the french 
research agency (ANR), but we are looking for partners to join 
us in european projects.
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Questions?
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k-simultaneous consensus

Context: asynchronous system
Weaken the consensus problem in a k-set 
agreement problem 
k-set agreement can be solved despite 
asynchrony and unit failures when k > t but not  
when t >= k.
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k-simultaneous consensus

Context: asynchronous system
Weaken the consensus problem in a k-set 
agreement problem 
k-set agreement can be solved despite 
asynchrony and unit failures when k > t but not  
when t >= k.
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Scientific objectives

Four mains scientific challenges ...
… Integrated into a unique project covering theoretical aspects 
up to real-world implementation
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