

Coordination and Computation in distributed intelligent MEMS

J. Bourgeois (1), J. Cao (2), M. Raynal (3), **D.** Dhoutaut (1), B. Piranda (4), E. Dedu (1), A. Mostefaoui (1), H. Mabed (1)

1: UFC/FEMTO-ST, 2: PolyU, 3: IRISA, 4: UFC
This work funded by the Labex ACTION and ANR/RGC under the contracts

Introduction

- Microtechnology is now a mature technology
- ·MEMS can be produced by thousands units
- ·Applications:

·What for?

Accelerometers

STMicro LIS331DLH

Introduction

- Microtechnology is now a mature technology
- ·MEMS can be produced by thousands units
- •Applications:

·What for?

Digital Micromirror Device

TI

Introduction

video

·Four mains scientific challenges ...

- ·Scalable and fault-tolerant distributed programming
 - Challenge: Propose a programming model which can scale up to millions of MEMS units

Programming model

- •Expected properties:
 - Scalable
 - Fault-tolerant
 - Allowing real-time features
 - Embedded in resource constraint environment
- ·Meld as a basis
 - Adding real-time features
 - Unit synchronization

- ·Scalable and fault-tolerant distributed programming
 - Challenge: Propose a programming model which can scale up to millions of MEMS units
- Integration of fully distributed computing and control
 - Challenge: Co-design between distributed computing and control to manage sensors/actuators.

Distributed actuation: principles

In K. Boutoustous, G. J. Laurent, E. Dedu, L. Matignon, J. Bourgeois, and N. Le Fort-Piat. Distributed control architecture for smart surfaces. In *IEEE/RSJ IROS*, pages 2018–2024, Taipei, Taiwan, October 2010. IEEE.

Distributed actuation: performance

- ·Very dependent on the programming model
- •Can estimate local processing times (WCET : Worst Case Execution Time)

- ·Scalable and fault-tolerant distributed programming
 - Challenge: Propose a programming model which can scale up to millions of MEMS units
- Integration of fully distributed computing and control
 - Challenge: Co-design between distributed computing and control to manage sensors/actuators.
- ·Fault detection
 - What are the possible faults, how to detect them, what do we require to do so

Failure localization

- MEMS actuators are prone to failure
- Detecting failures by analyzing misbehaviors
- Localizing faulty actuators
- Need for a distributed consensus algorithm

Failure localization

Leads to the « fault detector » concept : a high level service able to detect incorrect situations

Steps:

- Define the level of details and the « trustworthyness » of thoses detectors ir our context.
- Define the formal synchronism requirements of thoses detectors
- Implement the detectors in a distributed way

- ·Scalable and fault-tolerant distributed programming
 - Challenge: Propose a programming model which can scale up to millions of MEMS units
- Integration of fully distributed computing and control
 - Challenge: Co-design between distributed computing and control to manage sensors/actuators.
- ·Fault detection
 - Challenge: Propose a k-set agreement in an asynchronous message passing environment
- ·Scalable and efficient simulation
 - Challenge: Scale up in numbers while keeping sufficient precision

- Discrete events simulator with techniques originating from network simulation field
- Deterministic / ensure the reproducibility of the results
- ·Visualization to help understanding / debuging

·Scale well

- ·Four mains scientific challenges ...
- ... Integrated into a unique project covering theoretical aspects up to real-world implementation

Demonstrator: Blinky Blocks

Demonstrator

- Creating a conveying surface based on MEMS actuators
- Blinky Blocks will serve a a basis for computing/communication
- Two types of MEMS surface will be used

Demonstrator: Pneumatic surface

Quadblocks

Yahiaoui, Manceau...

Demonstrator: Ciliary surface

·Ciliary surface (actuators/sensors/processing)

Y. Mita,...

Conclusion

- Our project addresses both **practical** and **theoretical** problems
- •Real experiments and simulations will be used to assess its performance
- ·... also, this works is currently mainly funded by the french research agency (ANR), but we are looking for partners to join us in european projects.

Questions?

k-simultaneous consensus

- ·Context: asynchronous system
- •Weaken the consensus problem in a k-set agreement problem
- 'k-set agreement can be solved despite asynchrony and unit failures when k > t but not when t >= k.

k-simultaneous consensus

- ·Context: asynchronous system
- •Weaken the consensus problem in a k-set agreement problem
- 'k-set agreement can be solved despite asynchrony and unit failures when k > t but not when t >= k.

- ·Four mains scientific challenges ...
- ... Integrated into a unique project covering theoretical aspects up to real-world implementation

