
User’s and developer’s manual of BitSimulator

BitSimulator’s authors

November 8, 2024

Contents

1 Introduction 1

2 Features and limitations 1

3 Scenario specification 2

3.1 XML configuration file 2

3.1.1 Hello World example 2

3.1.2 All the elements 2

3.2 Command line 2

4 Simulation information 3

4.1 World specification 3

4.1.1 Node deployment 3

4.1.2 Specifying heterogeneity 3

4.1.3 Implementation details 3

4.2 Modulation specification 3

4.2.1 TS-OOK main concepts 4

4.2.2 Sending and receiving packets 4

4.2.3 Propagation model 4

4.2.4 Neighbours’ list computation 4

4.2.5 Packet collisions 5

4.3 Routing/network layer specification 5

4.3.1 Pure flooding 5

4.3.2 Probabilistic flooding 5

4.3.3 Backoff flooding 5

4.3.4 SLR addressing and routing protocol 5

4.3.5 Ring protocols 6

4.3.6 Implementation details 6

4.4 Application layer specification 6

4.4.1 CBR sources and sinks 6

4.4.2 DEDeN 6

4.4.3 Implementation details 6

4.5 Log system 6

4.5.1 events.log file 7

4.6 Reproducibility information 7

4.7 Other implementation details 7

5 Tutorials 8

5.1 Creating a new routing agent 8

5.2 Creating, scheduling, and processing an event 9

5.3 Creating a new command line option (pa-
rameter) with TCLAP library 9

5.4 Creating new types of lines in the events.log
file . 9

6 VisualTracer 10

6.1 Command line 10

6.2 Graphical interface 10

6.3 Keys . 10

Figure 1: Screenshot of VisualTracer in 3D, showing nodes
in sending (blue) or receiving (green) state.

1 Introduction

BitSimulator is a fast wireless 3D nanonetwork bit-level
simulator for routing and transport levels. It comes with a
companion program, VisualTracer, allowing to show simu-
lation results on a 2D or 3D map.

You need to read BitSimulator’s article [4] too, which
presents the simulator from another point of view. TODO:
integrate all its information in this document

Authors and copyright 2017–2022: Dominique
Dhoutaut, Thierry Arrabal, Eugen Dedu.

Contributors: Florian Büther.
It is provided with a GPL licence.

2 Features and limitations

Some features:

� It can simulate and visualise 2D and 3D environments,
cf. figure 1.

� Given that it deals only with nanocommunications,
its design is simple and efficient. Tens of thousands
of nodes with a density of hundreds of nodes can be
simulated on a laptop.

� Propagation delay: packet arrival time on a node de-
pends on its distance from the sender (extremely im-
portant given the tiny time length of TS-OOK pulses).

� Computation of collisions uses the TS-OOK model by
checking the actual bit value of each packet currently
being received at each node.

� While it allows for multiple concurrent receptions on a
given node, it also acknowledges that there is a limit to
their number (caused by hardware processing power or
buffer space for instance); in particular, this param-
eter has a strong impact on the behaviour of upper

1

layer protocols, as packets otherwise correct can be
completely ignored.

� The simulator’s behaviour is deterministic, and uses
several random number generator instances with their
own seed.

� Nodes can sleep (duty cycling) with a cycle equal to Ts.

� Two propagation models are provided: the well-known
disc model, and shadowing, where the border is
blurred, i.e. random losses can occur at the border of
the communication range. The communication range
used by nodes can change runtime.

� It implements several protocols: SLR routing protocol,
probabilistic flooding, backoff flooding, and others.

� It comes with an extremely useful visualisation tool,
VisualTracer.

� Use of XML configuration files along with command
line parameters allows easy batch runs. Changing pa-
rameters and seeds allows to get statistical results and
explore the effect of various parameters.

Some limitations are the following:

� Nodes are static

� There is no energy model

� Antennas are omnidirectional (both for sending and
receiving)

� It simulates only one kind of networks: nanonetworks,
e.g. it cannot simulate a nanonetwork–IP mix of net-
works.

� A node always sends packets sequentially (one after
the other), even if it schedules to send several packets
at the same time.

3 Scenario specification

The scenario is specified in scenario.xml file and through
command line options. The latter have precedence. All the
XML elements and command line options are discussed in
their sections.

3.1 XML configuration file

3.1.1 Hello World example

<scenario>

<world sizeX_nm="6000000" sizeY_nm="0" sizeZ_nm="6000000">

<genericNodes count="1000" positionRNGSeed="1"/>

</world>

<modulation>

<ts-ook pulseDuration_fs="100" defaultBeta="1000"

defaultCommRange_nm="500000"

maxConcurrentReceptions="10"

minIntervalBetweenSends="0"

minIntervalBetweenReceiveAndSend="0"/>

</modulation>

<routing defaultBackoffWindow="10000" backoffRNGSeed="1">

<PureFloodingRouting/>

</routing>

<applications>

<cbr flowId="0" srcId="3" dstId="10" port="1"

packetSize="1000" repetitions="3" interval_ns="100"

startTime_ns="1000000"/>

</applications>

<log/>

</scenario>

3.1.2 All the elements

Here are all the optional elements, with all their attributes.

<name>Pure flooding test</name>

<description>Pure flooding test description</description>

<world>

<node id="0" posX_nm="100" posY_nm="0" posZ_nm="100"/>

<area shape="rectangle" x_nm="3000000" y_nm="0" z_nm="3000000"

sizeX_nm="3000000" sizeY_nm="0" sizeZ_nm="3000000"

distribution="uniform" nodesCount="100" positionRNGSeed="5"/>

<area shape="rectangle" x_nm="0" y_nm="0" z_nm="0"

sizeX_nm="3000000" sizeY_nm="0" sizeZ_nm="3000000"

distribution="normal" meanX_nm="3000000" meanY_nm="0"

meanZ_nm="3000000" deviationX_nm="500000"

deviationY_nm="0" deviationZ_nm="500000"

nodesCount="2000" positionRNGSeed="50"/>

<area shape="ellipse" x_nm="3000000" y_nm="0" z_nm="3000000"

sizeX_nm="3000000" sizeY_nm="0" sizeZ_nm="3000000"

distribution="uniform" nodesCount="1000"/>

<area shape="rectangleHole" x_nm="100000" y_nm="0" z_nm="100000"

sizeX_nm="1000000" sizeY_nm="0" sizeZ_nm="100000"/>

</area>

</world>

<modulation>

<ts-ook ... commRangeStandardDeviation_nm="50000"/>

</modulation>

<routing>

<!-- one of the following routing agents -->

<PureFloodingRouting/>

<ProbaFloodingRouting probability=".2"/>

<BackoffFloodingRouting/>

<RayTracingRouting/>

<SLRRouting commRangeSetup_nm="250000"

useCounterBasedForwarding="true"

useDeviation="true"

firstBeaconStartTime_ns="200000"

intervalBetweenBeaconStart_fs="200000000000"

anchor1id="0" anchor2id="2" anchor3id="5"/>

...

</routing>

<applications>

<DEDeN enabled="true" startTime_fs="1000000"/>

<cbr ... beta="1000"/>

</applications>

<log prefix="new"/>

3.2 Command line

The command line options for BitSimulator are the follow-
ing:

[--scenarioFile <string>] [-D <string>] [--prefix

<string>] [--routing <string>] [--neighboursList] [--ecc

<int>] [--genericNodesRNGSeed <int>] [--genericNodesCount

<int>] [--defaultBeta <long>] [--defaultBackoffWindow

<int>] [--backoffRNGSeed <int>] [--nodePositionNoise

<int>] [--deden] [--dedenRNGSeed <int>]

[--dedenLoadEstimationFromFile] [--awakenDuration <int>]

[--awakenNodes <int>] [--sleepRNGSeed <int>]

[--disableLogsAtRoutingLevel] [--disableLogsAtNodeLevel]

[--backoffMultiplier <float>] [--backoffRedundancy <int>]

[--hcdPathWidth <int>] [--rangeSmall <distance_t>]

[--rangeBig <distance_t>] [--probability <float>]

2

[--slrPathWidth <int>] [--loadSLRPositionsFromFile]

[--D1DoNotSimulateFlood] [--D1MinPacketsForTermination

<int>] [--D1RemainingFreeRounds <int>] [--D1MaxRound

<int>] [--D1MaxTic <int>] [--D1ErrorMax <float>]

[--D1GrowRate <float>] [--payloadRNGSeed <int>] [-g] [--]

[--version] [-h] <string>

Execute bitsimulator -h for more information.

By default, BitSimulator looks for scenario.xml file in
the current directory. The file name and the directory can
be changed with a file name at the end and -D parameters.

4 Simulation information

4.1 World specification

4.1.1 Node deployment

The world (network) is rectangular, its parameters being
specified in the XML file or in the command line. The
world can be 2D (when the Oy dimension is 0) or 3D. Nodes
must be inside, and can be created in three manners:

� manually, by specifying their position, in the XML
file, e.g. <node id="0" posX_nm="100" posY_nm="0"

posZ_nm="100"/>.

� randomly inside the whole network, by speci-
fying their number in the XML file or in the
command line, using a uniform distribution, e.g.
<genericNodes count="1000" positionRNGSeed="1"/>.

� using areas, see below.

Note that in the XML file the random placement must
come after all the manual placements (for id assignment
reasons).

Also, no check is done if two nodes are in the same po-
sition, since this is not a problem in the simulator.

--genericNodesRNGSeed is used for the random place-
ment of the nodes.

4.1.2 Specifying heterogeneity

Allowing the specification of only one distribution is not
sufficient in some cases. For example, SLR anchors should
be located at the border of the network; however, in distri-
butions like Gauss or Poisson the borders have few nodes,
and beacons generated by anchors on borders might have
too few neighbours and not propagate through the net-
work. Also, empty zones cannot be specified through a
distribution. Hybrid scenarios, like a homogeneous zone,
an empty one, and an attenuation one, cannot be specified
either.

BitSimulator is flexible in this respect, allowing to spec-
ify heterogeneous densities around three notions: areas, dis-
tributions, and holes:

� An area can be a rectangle (rectangular cuboid in 3D)
or an ellipse (ellipsoid in 3D). The XML file can specify
several areas. When several areas are present in a
region, they have cumulative effect (nodes from all of
those areas are placed in the region). A nested area
has its coordinates expressed relatively to its parent
area.

|--------|------------|---------------------|----------->

0 200*10^9 500*10^9 1000*10^9

DEDeN SLR setup Sleep enabling CBR start

Figure 2: Default order of protocol execution during simu-
lation (times are in fs). The starting times can be modified
in the XML file.

� Each area has a distribution attached to it, along with
its parameters if any. The implemented distributions
are: uniform (or homogeneous) and Gauss (or normal,
in rectangle only). No node will be placed outside
the area of the distribution. No node will be placed
outside the world.

� Rectangular holes, where no node exists, can be spec-
ified. The place where a hole is specified inside the
<area> element matters: a rectangleHole puts a hole
in its parent shape, but only in the siblings that have
been defined before the rectangleHole.

An example of network density is to use a homogeneous
distribution everywhere, and above it a normal law. “Bor-
ders” in terms of density, generated by two adjacent areas,
can be attenuated by specifying a gradient between the two
areas for example.

4.1.3 Implementation details

World World is the class in charge of the world’s param-
eters such as the size and all the placement of all nodes. It
also initialises routing agents, nodes etc., and handles the
neighbour list (section 4.2.4).

Nodes can be placed in the closed interval [0,size],
where size is the size of the world in that direction.

Node Nodes are responsible for the transmissions and
the reception code. They can store their neighbours list in
the static mode.

SleepingNode This class derives from the Node class.
Sleeping (duty cycling) nodes are able to sleep (to save
resources); while sleeping, all the packets received by it are
discarded. Sleeping nodes sleep in a cyclic way for each Ts.

The duration is specified in two manners, via command
line options: either absolute (--awakenDuration), or in-
ferred from the average number of awake neighbours de-
sired (--awakenNodes). For the latter option, the duration
of each node will be different, because it depends on either
the number of neighbours, or its estimated neighbours (if
DEDeN is used). The sleeping mechanism is presented
in [6, section III].

Once the duration is known, the --sleepRNGSeed com-
mand line parameter sets the seed for the RNG used to set
the beginning of the sleeping period for sleeping nodes.

Nodes do not sleep at the beginning of simulation, but
starting from 500 ∗ 109 fs. This is to allow the setup phase
of some protocols to run in non sleeping mode. The overall
order of algorithms is shown in figure 2; of course, they are
executed only when enabled in the scenario.

4.2 Modulation specification

Only one protocol is implemented, TS-OOK. This means
that BitSimulator cannot simulate a nanonetwork–IP or

3

nanonetwork–Bluetooth network for example.

4.2.1 TS-OOK main concepts

TS-OOK [5] is a pulse-based modulation. For more infor-
mation about TS-OOK see for example [4, section 2.1].

4.2.2 Sending and receiving packets

Sending is done sequentially, even if sev-
eral packets are scheduled to be sent. At-
tributes minIntervalBetweenSends and
minIntervalBetweenReceiveAndSend specify the mini-
mum time between the beginning of two consecutive sent
packets, and between the beginning and the reception of
the last packet, respectively, for any nodes. NB: these
attributes do not work reliably currently, let them be 0!!

All the nodes have a maximum concurrent receptions
(MCR) value, configurable in XML file. An MCR of n

means that nodes can process at most n packets in parallel,
so it ignores all the other packets received at the same time
as the n packets being processed. More information is given
in [2, section 3].

4.2.3 Propagation model

BitSimulator proposes two propagation models, both sta-
tistical (unlike COMSOL Multiphysics for example, where
reception considers the characteristics of the space): the
free space model (also known as all or nothing model, or
disc model), and an improved model, known as shadowing
in other simulators.

By default, a node receives a packet iff the distance be-
tween it and sender is smaller than or equal to the com-
munication range. The range is configurable in the XML
file.

The communication range can be modified runtime, us-
ing setCommunicationRange function in a node or in a
packet. However, note that it cannot be greater than the
initial communication range, specified in the XML file. It
is important to note that, when using the node function,
the range used is checked when the packet is injected in
the network, which is not necessarily the same as when
the packet is sent by the application in case several pack-
ets wait in node’s queue (remember that packets are sent
sequentially). This is why this function exists in a packet
too. To conclude, it is safer to use node for the beginning of
the simulation, and packet when the range changes during
the simulation. Contact us for further details.

When using the commRangeStandardDeviation_nm at-
tribute in the XML file (by default, it is 0), BitSimulator
uses a propagation model which blurs the border, i.e. allows
random losses near the border, depending on the distance,
as shown in figure 3. The model, also called shadowing
in ns2 network simulator, uses the normal distribution, is
moved to left 3*stddev (3 is chosen so that the probability
beyond the communication range be very small, 0.5%), and
is cut (changes sharply) before commrange–6*stddev (i.e.
all packets are received for a distance less than this value,
which represents 0.5% of them) and beyond communica-
tion range (i.e. no packet is received by nodes at distance
greater than or equal to the communication range, which
represents 0.5% of them). In this model, losses change over
time, to avoid that the same node systematically losses or

Figure 3: BitSimulator uses an improved disc model for
propagation.

Figure 4: The classical disc model on the left, and BitSim-
ulator model on the right; the blue node sent a packet, and
the green nodes received a packet.

receives packets. Figure 4 clearly shows the difference com-
pared to the disc model; it can also be noticed that some
nodes closer to the central node do not receive the packet,
while others are further and do receive it.

4.2.4 Neighbours’ list computation

Given that links are wireless, messages are broadcasted to
all the neighbours of sending node. The lists of all neigh-
bours of each node can be computed in two ways:

� dynamically: the simulator (re)computes it each time
a node sends a message.

� statically: the simulator computes each node’s neigh-
bourhood at the beginning and stores it in memory for
the duration of the simulation; of course, this mode
consumes a lot of memory, and cannot be used for
mobile nodes

The best mode depends on the scenario, for instance in a
broadcast (flooding) all the nodes send at least a message,
hence static mode is identical or faster; in SLR point-to-
point, numerous nodes do not send any message, hence the
dynamic mode might be faster.

The default mode is dynamic. To use the static mode,
use the --neighboursList command line option.

Note that the results of the two modes could be different,
due to different sorting order of neighbour’s list due to
random number usage.

In the static mode, when executing several times a given
simulation scenario, it would be faster to compute once for

4

all the neighbours’ list and load it each time the simulator
runs; this feature is not yet implemented.

4.2.5 Packet collisions

In BitSimulator, the collision model has some real aspects,
and some other statistic. It is real in the sense that the
values of the bits are considered, and is statistic because
two bits are considered as collision if the time of reception,
whose length is Tp, intersect.
We define two bits arriving at the same time at a re-

ceiver as collided (or overlapped) bits. This receiving time
depends on bit sending timing and receiver position. This
overlapping is destructive for a receiving bit (changes its
value, and makes the bit corrupted) only when this bit
is 0, and at the same time it receives a 1 bit from another
flow. For random bits for example, this means that only
one quarter of overlappings lead to corruption. More in-
formation is given in [4].
In BitSimulator, collisions are computed on each node,

on each bit of each frame. Whenever an endReceiveEvent

is processed, the concerned packet is checked against all the
other packets that are being received by the same node. It
also runs on endSendPacketEvent, which checks against all
the packets being received and mark them if there is col-
lision. The collision checking does not generate any event,
this process is integrated in the reception process.
In real networks, to find out whether a packet is altered

or not, packets must include a checksum. On the contrary,
in BitSimulator, if the number of corrupted bits exceeds a
given threshold, the packet is dropped. This threshold is 0
by default, but can be set with --ecc command line option,
which allows to test error correction codes for example.

4.3 Routing/network layer specification

Available protocols are found in src/agents directory.
Only one protocol can be used in a simulation.

4.3.1 Pure flooding

The routing agent is PureFloodingRouting. Note that
each node stores the max id (and not the whole list of
ids seen) seen to decide whether it forwards a packet
or not. A backoff window is used for each forwarding,
given by defaultBackoffWindow attribute, which also uses
backoffRNGSeed attribute, and corresponding command
line options.

4.3.2 Probabilistic flooding

The routing agent is ProbaFloodingRouting. It is the
same as pure flooding, except that it uses a probability to
decide whether to forward a packet or not (attribute in
XML and --probability parameter in command line).

4.3.3 Backoff flooding

The routing agent is BackoffFloodingRouting. Backoff
flooding greatly reduces the number of forwarders for flood-
ing. It is described in [3].

Backoff flooding needs the number of neighbours to com-
pute its backoff window. If DEDeN algorithm is enabled
(section 4.4.2), nodes use the estimation it provides, oth-
erwise they use the real number of neighbours.

The --backoffRNGSeed command line parameter (found
in XML file too) sets the seed for the RNG used to
set the sending time inside the waiting window, and
--backoffRedundancy (defaults to 1) sets the redundancy.

4.3.4 SLR addressing and routing protocol

The routing agent is SLRRouting. The simulator imple-
ments the original SLR [7], with its two phases: setup (also
known as addressing or coordinate acquisition) and rout-
ing. It brings to it several improvements, described at the
end of this section.

Anchors are specified in the XML file, as attributes of the
agent (section 3.1). Up to three anchors can be specified.

If the dstNode of a flow is -1, then all the nodes forward
the packets of this flow, acting like a flooding.
slrPathWidth attribute and --slrPathWidth command

line option sets the width of the SLR path (must be strictly
positive, default value is 1).

The SLR addressing phase starts at time 200 ∗ 109 fs
in the simulator, as shown in figure 2; this time can be
modified in the XML file (firstBeaconStartTime_fs at-
tribute). At that time the anchor with the smallest id

sends its beacon. To avoid beacons to meet each other,
each of the other anchors sends its beacon after .1∗109∗id fs
after having received the beacon from the first anchor,
where id is the number of that anchor (in ascending or-
der: 1, 2, etc.) This latter value can be modified in the
XML file (intervalBetweenBeaconStart_fs attribute).
Note that BitSimulator assumes that the sending node

knows not only the destination node id, but also its SLR
coordinates. BitSimulator does not deal with acquiring
this information. Dealing with this depends on the com-
munication pattern. In many-to-one, the sink might flood
once the network, so that all the nodes get its SLR coor-
dinates. In many-to-many, a protocol to discover the SLR
zone of the destination is needed. This can be done either
using flooding, or using a register service like DNS, where
all the nodes register at the beginning. This is to be done
when needed (the node has a packet to send), and maybe
only once, because the node will cache this information
(depending on its available memory too).

The --loadSLRPositionsFromFile parameter skips
SLR addressing phase and loads SLR coordinates from
previously generated files (acting like an SLR cache). It
tremendously speeds up very short simulations. But be
very careful: No check is done whether the scenario has
changed since then, so use it only during testing for a small
period of time, and regenerate it often!

BitSimulator adds to the original SLR several improve-
ments:

1. It adds a backoff when forwarding packets, as
specified by defaultBackoffWindow attribute and
--defaultBackoffWindow command line option (sec-
tion 3.1).

2. It allows (through commRangeSetup_nm attribute
of SLRRouting tag) to specify the communication
range used during the setup phase, which can
be smaller than the one used during routing (i.e.
defaultCommRange). This allows to create SLR mini-
zones, to ensure or at least to increase the chances that
a node in a zone can reach at least a node in the next
zone.

5

3. When sleep is used, all the nodes in the destination
zone retransmit the packet (this is needed to allow the
destination node to receive the packet when the packet
arrived in the destination zone and by bad luck it was
sleeping at that time).

4. When using useCounterBasedForwarding attribute,
during the routing phase, only some of the nodes for-
ward the packet, using a backoff (when forwarding
packets) taken not from a fixed window, but from a
dynamic one, and a counter, exactly like in backoff
flooding (described in section 4.3.3).

5. When using useDeviation attribute, during the rout-
ing phase, the SLR width, initially 1 (or as given
by slrPathWidth value above), is stored in packets
and is increased by nodes in case of congestion of
concurrent flows. Additionally, deviateThresh and
convergeThresh parameters in the agent .cpp file
change the thresholds. Details are given in [1].

4.3.5 Ring protocols

4.3.6 Implementation details

RoutingAgent The RoutingAgent class handles the
reception and the transmission at the network level.
Any routing agent inherits from the RoutingAgent

class. Only one routing agent can be used in a sim-
ulation. A routing agent runs two main functions:
receivePacketFromApplication, which handles pack-
ets coming from the application (upper layer) and is
called only on the source node of the packet, and
receivePacketFromNetwork, which handles the reception
of packets coming from the network (lower layer) and is
called on each hop of the packet (but not on the source
node of the packet). Section 5.1 describes how to create
new routing agents.

4.4 Application layer specification

4.4.1 CBR sources and sinks

By default, all the flows in CBR use the default beta (from
ts-ook element). It is possible to specify a different beta
for a flow, by using beta attribute.
Use positive (≥ 0) values for flowID, so that it does

not conflict with other protocols (e.g. DEDeN, SLR setup)
which use -1.
The startTime attribute specifies when the CBR flow

starts sending data (1000 ∗ 109 fs in our example in sec-
tion 3.1). Note that it usually starts after the other algo-
rithms, as shown in figure 2, be careful that it does not
overlap with SLR setup phase for example.

If the dstId attribute is -1, then all the nodes are desti-
nation of the CBR packets. Note that there is a difference
between flooding with a given destination, and with -1: in
both cases all the nodes forward the packet, but whereas in
the first case only the destination node upwards the packet
to application level, in the second case all the nodes do
that. This is similar to sending a packet in Wi-Fi to a
given IPv4 address, or to 255.255.255.255: in both cases all
the nodes receive the packet, but it is processed only by
the destination node in the first case, or by all nodes in the
second case. TODO write/move this info to pure-flooding?

repetitions attribute sets the number of packets gen-
erated. If greater than 1, interval_ns attribute sets the
time between the sending of the first bit of two consecu-
tive packets. A value of 0 means to send all the packets
at the same time; note however that a node in BitSimu-
lator cannot send several packets at the same time, but
sequentially.

The payload is binary and random. It uses its own RNG,
whose initial seed can be set using --payloadRNGSeed pa-
rameter in command line.

4.4.2 DEDeN

Density Estimation of Dense Networks is explained in [2].
It is enabled with --deden command line or with
<DEDeN enabled="true"/> in the XML file. It has two
phases: init, where a packet is broadcasted to whole net-
work to initiate the algorithm, and probe, where nodes send
packets to get their estimation of neighbour density.

Enabling DEDeN creates the two-phase packet ex-
changes above to estimate the node densities, and makes
protocols using density information, such as those based on
backoff flooding (see their description), use that estimation
instead of the real number of neighbours.

By default, DEDeN init phase starts at time 0 in the
simulator, and probe phase a bit later???, as shown in fig-
ure 2. startTime_fs attribute can be used to modify the
starting time.

The --dedenLoadEstimationFromFile parameter skips
DEDeN phase and loads DEDeN information from pre-
viously generated files (acting like a DEDeN cache). It
tremendously speeds up very short simulations. But be
very careful: No check is done whether the scenario has
changed since then, so use it only during testing for a small
period of time, and regenerate it often!

4.4.3 Implementation details

ApplicationAgent, ServerApplicationAgent,
DataSinkApplicationAgent An ApplicationAgent

class can be attached to nodes, either by instantiation
or by inheritance. It handles packet transmission at
application layer. For instance, the CBR application
generates packets with a fixed interval between consec-
utive packets. ServerApplicationAgent is a specific
ApplicationAgent able to handle transmission and recep-
tion. DataSinkApplicationAgent is a basic server, which
just receives packets. Applications have ports attached,
like in TCP/UDP, so that several applications can run on
a node.

4.5 Log system

The log system writes two main files:

� events.log: the main log file, which contains all the
tracked events during the simulation, such as packet
receptions and emissions

� positions.log: contains the geographical positions
of nodes.

In some cases, it writes other files as well:

� SLRPositions.log: contains the SLR coordinates of
nodes, when using an SLR-based routing

6

� neighboursPositions.log: contains the neighbours
list for all nodes, when --neighboursList is passed
in the command line

� densityError.log: contains the neighbours estima-
tion (node density) for all nodes, when DEDeN is en-
abled.

When running several simulations with the same sce-
nario, it becomes useful to keep their log files (for analysis
purposes) instead of overwriting them each time. This can
be achieved with prefix attribute in xml file or in com-
mand line: all the log files generated will have this prefix.

4.5.1 events.log file

events.log describes the simulations events and embeds
its own dictionary. Each event is described by a type of
line, and each time a new type of line appears in the log
file, an XML description of this line is given right before
it. For example:

#<lineFormat id="0" key="s" description="packet sent">

<item type="Integer 64" key="time">simulation time</item>

<item type="Integer 32" key="nodeID">node ID</item>

<item type="Integer 32" key="transmitterID">node ID</item>

<item type="Integer 32" key="beta">beta</item>

<item type="Integer 32" key="size">packet size</item>

<item type="Integer 32" key="type">packet type</item>

<item type="Integer 32" key="flow">flow id</item>

<item type="Integer 32" key="seq">pkt sequence number</item>

#</lineFormat>

0 3900234 0 0 1000 40 3 1 0

The XML stanza (lines starting with #) is the dictionary,
and is put right before each new line type. In this example,
the last line contains the “communication” data, and has
the following fields, in order:

1. event type, 0 stands for “packet sent”, as given in
the dictionary; common event types are: sent, re-
ceived, collision, ignore (when the packet arrives but
the buffer contains already MCR packets, hence packet
is dropped; note that a packet which is both collided
and ignored is counted as ignore only)

2. date of the event in femtoseconds

3. node on which the event happened

4. node that transmitted the packet; here it is the same
as the 3rd field, since the event is a “sent” packet; in
a reception event these two fields would be different

5. beta

6. packet size in bits

7. packet type (not to be confounded with the event
type); packet types are specified in packet.h file:

enum class PacketType {

DATA, //0

SLR_BEACON, //1

DENSITY_PROBE, //2

D1_DENSITY_INIT, //3

D1_DENSITY_PROBE, //4

...

+--> Time

^ startSendEvent (sender starts sending the first bit)

|traveltime|

Bits at +___+ +___+ +___+

receiver: ^ startReceiveEvent ^ endReceiveEvent

Figure 5: Times when events related to packet transmission
occur. TO BE CHECKED

For the particular case of SLR beacons and DEDeN
probes, the destination id is set to -1. (This information
does not appear in the case above because the destination
id is simply not added to the above particular log.)

Section 5.4 explains how to create log lines in
events.log file.

4.6 Reproducibility information

BitSimulator gives reproducible results.
It eases the reproducibility by using several random

number generator (RNG) instances, each with its own seed,
e.g. backoffRNGSeed, dedenRNGSeed. Thus, it allows to
see how results are affected by the random numbers used
for backoffs (and not by node position for example). The
various RNGs are mentioned in the appropriate sections.

Simulations done with BitSimulator are reproducible,
with two exceptions. gcc compiler version 11 changed uni-
form int distribution, which affects results. Also, the same
scenario executed on GNU/Linux and macOS give different
results; this is because the RNG used in the two systems
are different.

4.7 Other implementation details

Scheduler BitSimulator is an event-driven simulator;
the scheduler is the core of the simulator. It pulls chrono-
logically the events from a (time,event) map and consumes
them.

Event Events can be generated at any moment by any
class of the simulator. They are used to schedule most of
things in the simulation. They are automatically consumed
by the scheduler.

For example when a CBR application sends a message,
a first CBR event is created. All the subsequent events
are automatically managed by the simulator. This event
is consumed (by the scheduler) and generates two events:
it makes the sending node emit the packet (through a
startSendEvent event) and it schedules another CBR
event. Later, when the startSendEvent is consumed,
it creates (schedules) one event (startReceiveEvent)
for each of the nodes receiving the packet, and an
endSendEvent for itself. Each startReceiveEvent cre-
ates an endReceiveEvent, which calls the collision code
to decide if a packet is correctly received or not. Collision
checking (described in section 4.2.5) does not generate any
event.

The exact times when these events occur are shown in
figure 5. Thus, to have two packets exactly one after the
other for instance, the delay to add at endReceiveEvents
to schedule the second packet is Ts − Tp.

Packet The Packet class represents messages exchanged
between nodes, no matter the layer (application, network

7

https://gcc.gnu.org/gcc-11/changes.html#libstdcxx
https://gcc.gnu.org/gcc-11/changes.html#libstdcxx

etc.) Header fields are specified as members of the Packet
class. The payload array represents the actual data; cur-
rently, it is random (contains as many 1 as 0); by changing
the distribution of 1 and 0 it is possible to simulate different
types of coding.

5 Tutorials

5.1 Creating a new routing agent

This tutorial presents how to modify BitSimulator in order
to add a new routing agent. This example shows a simple
routing agent that forwards packets according to the packet
sequence number. The idea is to make only half of the
nodes forward a message in order to make a somewhat
optimised broadcast from a node to the whole network.

All new agents are derived from the RoutingAgent class.
All the routing agents are found in the src/agents direc-
tory. You can inspire from any file from this directory, such
as pure-flooding-routing-agent.cpp.

Create the file src/agents/new-routing-agent.cpp

with the following content:

#include "new-routing-agent.h"

NewRoutingAgent::NewRoutingAgent(Node *_hostNode) : RoutingAgent(_hostNode) {

}

void NewRoutingAgent::receivePacketFromNetwork(PacketPtr _packet) {

}

and the accompanying file
src/agents/new-routing-agent.h with the follow-
ing content:

#include "routing-agent.h"

class NewRoutingAgent : public RoutingAgent {

public:

NewRoutingAgent(Node *_hostNode);

void receivePacketFromNetwork(PacketPtr _packet);

};

Add these files to Makefile.am file, and run
./configure && make. There should be no error.

The next step is to attach it to nodes. In the
src/node.cpp file, Node::startupCode function the cur-
rent code is:

// attach the routing agent

string agent = ScenarioParameters::getRoutingAgentName();

if (agent.compare("PureFloodingRouting") == 0)

attachRoutingAgent(new PureFloodingRoutingAgent(this));

else if (agent.compare("NoRouting") == 0)

attachRoutingAgent(new NoRoutingAgent(this));

[...]

else if (agent.compare("ProbaFloodingRingRouting") == 0)

attachRoutingAgent(new ProbaFloodingRingRoutingAgent(this));

else

assert (false); // no valid routing agent specified

Here you have to add your own else if line and com-
pare the agent value with the name you give to your rout-
ing agent. The last lines of the code above become:

else if (agent.compare("ProbaFloodingRingRouting") == 0)

attachRoutingAgent(new ProbaFloodingRingRoutingAgent(this));

else if (agent.compare("NewRouting") == 0)

attachRoutingAgent(new NewRoutingAgent(this));

else

assert (false); // no valid routing agent specified

Note that the “string name” for comparison and the actual
class name can differ.

You also needs to include the header file after the list of
the other header files:

[...]

#include "agents/proba-flooding-ring-routing-agent.h"

#include "agents/slr-routing-agent.h"

#include "agents/slr-ring-routing-agent.h"

#include "agents/new-routing-agent.h"

Recompile with make, there should be no error.
The last step is to specify it in the scenario.xml file.

Replace the already mentioned routing agent with your
own:

<routing>

<NewRouting/>

</routing>

The NewRoutingAgent is now available in the simulator.
Now, let us make the agent do the forwarding we want, as

specified in the beginning of the section. For that, we mod-
ify the NewRoutingAgent constructor to add the new speci-
ficities: we add a “parity” variable in NewRoutingAgent

attributes, and randomly set it to 0 or 1.
The initializeAgent method, called before the agent’s

constructor by World::initAgents(), can be used to set
things which cannot be set in the constructor, such as log
files or a specific random generator.

Next, two functions have to be implemented:

� receivePacketFromApplication, which handles
packets coming from the application (upper layer)

� receivePacketFromNetwork, which handles the re-
ception of packets coming from the network (lower
layer)

In our case, receivePacketFromApplication is very
simple and just sends the packet to the lower layer:

void NewRoutingAgent::receivePacketFromApplication (PacketPtr packet) {

// keep track in the packet of how many packets have been

// sent before from the same source

packet->setSrcSequenceNumber (hostNode->getNextSrcSequenceNumber());

// add packet to the sending queue of the node

// once in this sending queue, packets are sent automatically

hostNode->enqueueOutgoingPacket (packet);

}

The receivePacketFromNetwork function is the follow-
ing:

void NewRoutingAgent::receivePacketFromNetwork (PacketPtr packet) {

// the log file system is explained in a dedicated tutorial

LogSystem::EventsLogOutput.log (LogSystem::routingRCV,

Scheduler::now(), hostNode->getId(), (int) packet->type,

packet->flowId, packet->flowSequenceNumber,

packet->modifiedBitsPositions.size());

// if the packet arrived to the destination or is a

// broadcast packet (its dstId is -1), then send it

// to the coresponding ServerApplicationAgent hosted by the node

if (packet->dstId == hostNode->getId() || packet->dstId == -1) {

hostNode->dispatchPacketToApplication (packet);

LogSystem::EventsLogOutput.log (LogSystem::dstReach,

Scheduler::now(), hostNode->getId(), (int)packet->type,

packet->flowId, packet->flowSequenceNumber);

}

// test if this packet has to be forwarded by comparing

// the parity variable with the packet sequence number

// thus, packets are alternatively forwarded by half of the nodes

if (packet->flowSequenceNumber == parity%2)

hostNode->enqueueOutgoingPacket (packet);

}

8

The simulation is now ready to run with the brand new
routing agent.

5.2 Creating, scheduling, and processing
an event

This tutorial shows how to schedule an event and how to
specify the code to execute when that event is triggered.
Specifically, it shows how to send a packet after some delay
(similar to a backoff or waiting time).

Let NewRoutingAgent be the class dealing with the
event. Here is an example of creating, scheduling, and
processing an event:

PacketPtr packetClone (packet->clone());

auto sendEvent = new NewSendEvent (Scheduler::now()+10000,

this, packetClone);

Scheduler::getScheduler().schedule (sendEvent);

void NewRoutingAgent::processSendEvent (PacketPtr packet){

hostNode->enqueueOutgoingPacket (packet);

}

In the header file of the class we need to add:

virtual void processSendEvent (PacketPtr packet);

using NewSendEvent = CallMethodArgEvent<NewRoutingAgent,

PacketPtr,

&NewRoutingAgent::processSendEvent,

EventType::GENERIC>;

If you need to create your own event type, replace
EventType::GENERIC above with EventType::NEW_SEND

for example, and add NEW_SEND in enum class EventType

declaration in src/eventtypes.h file.
Commit b40239 contains a real case of event creation

and processing.

5.3 Creating a new command line option
(parameter) with TCLAP library

This tutorial shows how to add options to command line
when starting BitSimulator. This specific example adds a
new RNG seed in the simulator, usable for some random
phenomenon.

BitSimulator uses the TCLAP libary to handle the com-
mand line options. As such, this tutorial simply shows
how to use TCLAP library to add a command line option
(BitSimulator does not introduce any particularity in this
respect) and how to integrate the changes in the code.

The first step is to declare the parameter in utils.h file,
after de ##COMMANDLINE tag in the ScenarioParameters

class description. Two declarations are needed:

� the TCLAP variable that will receive the parameter

� a “standard” variable to access this parameter any-
where in the simulator.

Example :

int myRandomSeed;

TCLAP::ValueArg<int> *myRandomSeedParam;

The options can be of any type, however the template of
the TCLAP::ValueArg has to match to type of the variable.
Note that there is a special case for boolean.

In the following code, the TCLAP::ValueArg<T> becomes
a TCLAP::SwitchArg:

bool myBoolean;

TCLAP::SwitchArg *myBooleanParam;

The second step is to add the new option to the com-
mand line. Add the description of your new parame-
ter after the ##COMMANDLINE tag in utils.cpp in the
ScenarioParameters constructor, such as:

TCLAP::ValueArg<int> myRandomSeedParam ("w", "mySeed",

"This is my brand new random seed", false, 0, "int", cmd);

The parameters of the TCLAP::ValueArg<T> constructor
are, in order:

� The short option, invoked by using
bitsimulator -w 42

� The long option, invoked by using
bitsimulator --mySeed 42

� The option description, which appears at
bitsimulator --help

� A boolean to indicate if this option is needed (true)
or not (false)

� A default value, taken if it does not appear in the
command line

� The type of the parameter

� The command line variable

The final step is to get the value of the parameter. After
the line

cmd.parse(_argc, _argv);

which actually parses the command line, the value can be
retrieved like this:

TCLAP::ValueArg<T> myRandomSeed = myRandomSeedParam->getValue();

It is a good practice to use a private variable in
the ScenarioParameters class, available in the whole
simulator, and to use a getter to access it, like this:
ScenarioParameters::getMyRandomSeed();.

5.4 Creating new types of lines in the
events.log file

This tutorial modifies BitSimulator in order to manipulate
the log system. These lines appear in the events.log file
and describe the simulation. This example adds a log line
concerning SLRBackoffFloodingAgent3. In this routing
protocol, some packets can be dropped if they are copies
of another packets. We are going to track those drops.

The first step is to declare our new log line. In the log.h
file, in the LogSystem class we add the new line format after
the #LogSystem tag:

static OutputLineFormat SLRBackoffDrop;

Since the line format is static in the LogSytem class,
we class the constructor outside the class, after the
#StaticLogSystem tag in utils.cpp:

OutputLineFormat LogSystem::SLRBackoffDrop ("dr","SLR Backoff Drop");

9

The first parameter stands for the “key” and the second
parameter is a brief description. Both appear in the log
file dictionary.

The second step is to build the new log by adding some
content in the line format. For that, in the log.cpp in
the initLogSystem() function after the #LogSystem tag
we add the specification of our new line:

SLRBackoffDrop.addItem (LogItem::INT64, "date", "date in fs");

SLRBackoffDrop.addItem (LogItem::INT32, "nID", "node ID");

SLRBackoffDrop.addItem (LogItem::INT32, "pkT", "packet Type");

SLRBackoffDrop.addItem (LogItem::INT32, "flow", "flow id");

SLRBackoffDrop.addItem (LogItem::INT32, "seq", "sequence number");

These 5 lines will create a log line of 6 elements:

� a line id automatically created, useful to recognize the
new line in the log file

� the date of the drop coded on a 64 bit integer

� the id of the node that dropped the packet

� the packet type (packet type description is available
in packet.h)

� the flow id of the packet

� the sequence number within the flow.

Some string items can also be added to the line (but not
relevant in this example):

SLRBackoffDrop.addItem (LogItem::STRING, "mS", "My string example");

The final step is to actually use the line just cre-
ated. In the slr-backoff-routing-agent3.cpp file, the
SLRBackoffRoutingAgent3::receivePacketFromNetwork

(PacketPtr _packet) function handles packets coming
from the network. This function decides whether an
incoming packet is to be dropped or not. After the
// #Tuto (which is where waiting packets are erased), we
add our logging line to be notified each time a packet is
dropped:

LogSystem::EventsLogOutput.log (LogSystem::SLRBackoffDrop,

Scheduler::now(), hostNode->getId(), it->second.p->type,

it->second.p->flowId, it->second.p->flowSequenceNumber);

Note that here it->second.p is a packet.
The log function is variadic, hence its parameters are

not checked for correctness, so pay attention to them: their
number and type depend on the addItem made in the
lineFormat.

This log system can be called everywhere in the code as
soon as the LogSystem has been initialised.

6 VisualTracer

VisualTracer is a very powerful tool to understand what
happens in the network.

6.1 Command line

The command line options for VisualTracer are the follow-
ing:

[--scenarioFile <string>] [-D <string>] [--prefix

<string>] [--3d] [--initialTimeSkip <long>] [-s <long>]

[--nodeZoom <int>] [--chrono <int>] [--cn <long>] ...

[--complementaryNodeFloatInfoFileName <string>] [--]

[--version] [-h] <string>

Figure 6: An ignored packet can be shown before the con-
current packets which made it ignored.

Execute visualtracer -h for more information.
Important parameters are --chrono, which shows the

point of view of a node, and --stepLength (or -s), which
sets the time window (step) length inside which the events
are shown in the interface at a given moment.

6.2 Graphical interface

At any given time, VisualTracer shows what happens in the
network during all the duration of the step (time frame),
i.e. all the nodes which send a packet somewhere during
this step will be shown in blue etc. The length of a step
in VisualTracer is given by --stepLength (or -s) param-
eter. Time windows shown in VisualTracer start at iTS +
k*step, where iTS is 0 if not specified on the command line
(--initialTimeSkip). Empty time windows are skipped
(not shown). For ex. if events occur at time 0, 1, 11, 13,
and if the step length is 2, then step 1 is [0,2), step 2 is
[10,12), and step 3 is [12,14).

Note that, counterintuitively, an ignore event can be
shown before the receiver event if a small packet ignored
started being received after a big packet, cf. figure 6.

Histograms on the right side and on top show the number
of events in the current time frame. Note that number of
events can be higher than number of nodes, in case a node
receives several packets in the same time frame.

In 3D mode, the histograms are not shown, and inactive
nodes switch in the interface does not work.

6.3 Keys

You can interact with VisualTracer using the keyboard:

� Space bar or n to display the next step (go forward)

� Backspace key or p to go one step backwards

� Arrows to move the network view

� z/a to zoom in/out

� The keys specified at the top of the window (s, r, c,
i, t, m) to show/hide specific states of nodes

� q or ctrl-q to quit

Additionally, in 3D the network view can be rotated with
the mouse (click & move) or with the following keys: h, k
(for left/right) and u, j (for up/down).
Clicking on a node shows information about it (id and

coordinates) on terminal.

10

References

[1] T. Arrabal, F. Büther, D. Dhoutaut, and E. Dedu. Con-
gestion control by deviation routing in nanonetworks. In
6th ACM International Conference on Nanoscale Comput-
ing and Communication (NanoCom), pages 1–6, Dublin,
Ireland, Sept. 2019. ACM/IEEE.

[2] T. Arrabal, D. Dhoutaut, and E. Dedu. Efficient density es-
timation algorithm for ultra dense wireless networks. In
27th International Conference on Computer Communica-
tions and Networks (ICCCN), pages 1–9, Hangzhou, China,
July-Aug. 2018. IEEE.

[3] T. Arrabal, D. Dhoutaut, and E. Dedu. Efficient multi-hop
broadcasting in dense nanonetworks. In 17th IEEE Interna-
tional Symposium on Network Computing and Applications
(NCA), pages 385–393, Cambridge, MA, USA, Nov. 2018.
IEEE.

[4] D. Dhoutaut, T. Arrabal, and E. Dedu. BitSimula-
tor, an electromagnetic nanonetworks simulator. In 5th
ACM/IEEE International Conference on Nanoscale Com-
puting and Communication (NanoCom), pages 1–6, Reyk-
javik, Iceland, Sept. 2018. ACM/IEEE.

[5] J. M. Jornet and I. F. Akyildiz. Femtosecond-long pulse-
based modulation for terahertz band communication in
nanonetworks. IEEE Transactions on Communications,
62(5):1742–1753, May 2014.

[6] A. Medlej, K. Beydoun, E. Dedu, and D. Dhoutaut. Scal-
ing up routing in nanonetworks with asynchronous node
sleeping. In 28th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM),
pages 177–182, Hvar, Croatia, Sept. 2020. IEEE.

[7] A. Tsioliaridou, C. Liaskos, E. Dedu, and S. Ioannidis.
Packet routing in 3D nanonetworks: A lightweight, linear-
path scheme. Nano Communication Networks, 12:63–71,
June 2017.

11

	Introduction
	Features and limitations
	Scenario specification
	XML configuration file
	Hello World example
	All the elements

	Command line

	Simulation information
	World specification
	Node deployment
	Specifying heterogeneity
	Implementation details

	Modulation specification
	TS-OOK main concepts
	Sending and receiving packets
	Propagation model
	Neighbours' list computation
	Packet collisions

	Routing/network layer specification
	Pure flooding
	Probabilistic flooding
	Backoff flooding
	SLR addressing and routing protocol
	Ring protocols
	Implementation details

	Application layer specification
	CBR sources and sinks
	DEDeN
	Implementation details

	Log system
	events.log file

	Reproducibility information
	Other implementation details

	Tutorials
	Creating a new routing agent
	Creating, scheduling, and processing an event
	Creating a new command line option (parameter) with TCLAP library
	Creating new types of lines in the events.log file

	VisualTracer
	Command line
	Graphical interface
	Keys

